Difference between revisions of "User:Jhurley/sandbox"

From Enviro Wiki
Jump to: navigation, search
 
(945 intermediate revisions by the same user not shown)
Line 1: Line 1:
The persistent release of residual contaminants from low hydraulic conductivity (low ''k'') zones prevents many chlorinated solvent sites from reaching groundwater cleanup goals. Low ''k'' aquifer settings limit the effectiveness of many conventional remediation technologies that rely on extraction, recirculation, or amendment delivery and distribution to achieve contact between the residual contaminants and the reagents, contact which is necessary for subsequent contaminant transformation or destruction. Alternative methods are needed to effectively distribute remedial amendments, to control contaminants leaving low ''k'' source zones, and to enhance natural attenuation processes. Two innovative remediation technologies for the treatment of chlorinated solvents and other contaminants in low ''k'' media are introduced, along with operational and performance results from recent field demonstrations.   
+
==Assessing Vapor Intrusion (VI) Impacts in Neighborhoods with Groundwater Contaminated by Chlorinated Volatile Organic Chemicals (CVOCs)==
 +
The VI Diagnosis Toolkit<ref name="JohnsonEtAl2020">Johnson, P.C., Guo, Y., Dahlen, P., 2020. The VI Diagnosis Toolkit for Assessing Vapor Intrusion Pathways and Mitigating Impacts in Neighborhoods Overlying Dissolved Chlorinated Solvent Plumes.  ESTCP Project ER-201501, Final Report. [https://serdp-estcp.mil/projects/details/a0d8bafd-c158-4742-b9fe-5f03d002af71 Project Website]&nbsp;&nbsp; [[Media: ER-201501.pdf | Final Report.pdf]]</ref> is a set of tools that can be used individually or in combination to assess vapor intrusion (VI) impacts at one or more buildings overlying regional-scale dissolved chlorinated solvent-impacted groundwater plumes. The strategic use of these tools can lead to confident and efficient neighborhood-scale VI pathway assessments.   
 +
 
 
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
 
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
  
 
'''Related Article(s):'''
 
'''Related Article(s):'''
* [[Bioremediation - Anaerobic | Anaerobic Bioremediation]]
 
* [[Chemical Oxidation (In Situ - ISCO) | In Situ Chemical Oxidation]]
 
* [[Chemical Reduction (In Situ - ISCR) | In Situ Chemical Reduction]]
 
  
'''CONTRIBUTOR(S): '''  
+
*[[Vapor Intrusion (VI)]]
* [[Stephen D. Richardson, Ph.D., PE]]
+
*[[Vapor Intrusion – Sewers and Utility Tunnels as Preferential Pathways]]
* [[Craig E. Divine, Ph.D., PG]]
+
 
 +
'''Contributor(s):'''  
 +
 
 +
*Paul C. Johnson, Ph.D.
 +
*Paul Dahlen, Ph.D.
 +
*Yuanming Guo, Ph.D.
  
 
'''Key Resource(s):'''
 
'''Key Resource(s):'''
* The Horizontal Reactive Media Treatment Well (HRX Well<sup>&reg;</sup>) for Passive In-Situ Remediation<ref name="Divine2018a">Divine, C. E., Roth, T, Crimi, M., DiMarco, A.C., Spurlin, M., Gillow, J., and Leone, G., 2018. The Horizontal Reactive Media Treatment Well (HRX Well<sup>&reg;</sup>) for Passive In-Situ Remediation. Groundwater Monitoring & Remediation, 38(1), pp. 56–65.  [https://doi.org/10.1111/gwmr.12252 DOI: 10.1111/gwmr.12252]</ref>
 
  
* The Horizontal Reactive Media Treatment Well (HRX Well<sup>&reg;</sup>) for Passive In Situ Remediation: Design, Implementation, and Sustainability Considerations<ref name="Divine2018">Divine, C.E., Wright, J., Wang, J., McDonough, J., Kladias, M., Crimi, M., Nzeribe, B.N., Devlin, J.F., Lubrecht, M., Ombalski, D., Hodge, B., Voscott, H., and Gerber, K., 2018. The Horizontal Reactive Media Treatment Well (HRX Well<sup>&reg;</sup>) for Passive In Situ Remediation: Design, Implementation, and Sustainability Considerations. Remediation, 28(4), pp. 5-16.  [https://doi.org/10.1002/rem.21571 DOI: 10.1002/rem.21571]&nbsp;&nbsp; Also available from: [https://www.researchgate.net/publication/327487096_The_horizontal_reactive_media_treatment_well_HRX_WellR_for_passive_in_situ_remediation_Design_implementation_and_sustainability_considerations ResearchGate]</ref>
+
*The VI Diagnosis Toolkit for Assessing Vapor Intrusion Pathways and Impacts in Neighborhoods Overlying Dissolved Chlorinated Solvent Plumes, ESTCP Project ER-201501, Final Report<ref name="JohnsonEtAl2020"/>
  
* New Application of A Geotechnical Technology to Remediate Low-Permeability Contaminated Media – Final Technical Report<ref name="Richardson2020">Richardson, S.D., Hart, D.M., Long, J.A., and Newell, C.J., 2020. New Application of A Geotechnical Technology to Remediate Low-Permeability Contaminated Media – Final Technical Report. ER-201627, Environmental Security Technology Certification Program (ESTCP). [https://www.serdp-estcp.org/Program-Areas/Environmental-Restoration/Contaminated-Groundwater/Persistent-Contamination/ER-201627/ Project Overview]</ref>
+
*CPM Test Guidelines: Use of Controlled Pressure Method Testing for Vapor Intrusion Pathway Assessment, ESTCP Project ER-201501, Technical Report<ref name="JohnsonEtAl2021">Johnson, P.C., Guo, Y., Dahlen, P., 2021. CPM Test Guidelines: Use of Controlled Pressure Method Testing for Vapor Intrusion Pathway Assessment. ESTCP ER-201501, Technical Report. [https://serdp-estcp.mil/projects/details/a0d8bafd-c158-4742-b9fe-5f03d002af71 Project Website]&nbsp;&nbsp; [[Media: ER-201501_Technical_Report.pdf | Technical_Report.pdf]]</ref>    
  
==Introduction==
+
*VI Diagnosis Toolkit User Guide, ESTCP Project ER-201501<ref name="JohnsonEtAl2022">Johnson, P.C., Guo, Y., and Dahlen, P., 2022. VI Diagnosis Toolkit User Guide, ESTCP ER-201501, User Guide.  [https://serdp-estcp.mil/projects/details/a0d8bafd-c158-4742-b9fe-5f03d002af71 Project Website]&nbsp;&nbsp; [[Media: ER-201501_User_Guide.pdf | User_Guide.pdf]]</ref>
[[File:Richardson1w2Fig1.png | thumb | 400px | Figure 1. Examples of low ''k'' geology. Upper left: bay muds, Oakland, California; lower left: weathered siltstone, Denver, Colorado; right: tailings slimes, central New Mexico<ref name="Horst2019"/>.]]
 
[[File:Richardson1w2Fig2.png | thumb | 400px | Figure 2. Contaminant back diffusion (“Matrix Diffusion”) from low ''k'' zones<ref name="NRC2005">National Research Council, 2005. Contaminants in the Subsurface: Source Zone Assessment and Remediation. National Academies Press, Washington, DC, pp. 372. [https://doi.org/10.17226/11146 DOI: 10.17226/11146]&nbsp;&nbsp; [[Media: NRC2005.pdf | Book.pdf]]</ref>.]]
 
A critical challenge preventing many chlorinated solvent sites from achieving groundwater cleanup goals is the long term release of residual contaminants from low hydraulic conductivity (low ''k'') zones such as silts, clays, glacial till, over-bank deposits, marine deposits, tailings “slimes”, saprolite and bedrock (see Figure 1)<ref name ="Horst2019">Horst, J., Divine, C., Schnobrich, M., Oesterreich, R., and Munholland, J., 2019. Groundwater Remediation in Low-Permeability Settings: The Evolving Spectrum of Proven and Potential. Groundwater Monitoring & Remediation, 39(1), pp. 11-19. [https://doi.org/10.1111/gwmr.12316 DOI: 10.1111/gwmr.12316]</ref><ref name ="Sale2008">Sale, T., C. Newell, H. Stroo, R. Hinchee, and Johnson, P., 2008. Frequently Asked Questions Regarding Management of Chlorinated Solvents in Soils and Groundwater. Environmental Security Technology Certification Program (ESTCP) Project ER-0530, 38 pp. [[Media:2008-Sale-Frequently_Asked_Questions_Regarding_Management_of_Chlorinated_Solvent_in_Soils_and_Groundwater.pdf | Report.pdf]]&nbsp;&nbsp; [https://serdp-estcp.org/Program-Areas/Environmental-Restoration/Contaminated-Groundwater/Persistent-Contamination/ER-200530/(language)/eng-US Project overview]</ref>. Such sites may be dominated by matrix diffusion processes (see Figure 2) which can significantly prolong restoration and site management timeframes. Residual contaminants residing in low permeability zones slowly diffuse from the low ''k'' matrix back into higher permeability zones, becoming a persistent source that is very difficult to remediate. One of the side effects of matrix diffusion is concentration rebound after an ''in situ'' treatment is applied. This is commonly observed at sites treated with chemical oxidation<ref name="McGuire2006">McGuire, T.M., McDade, J.M., and Newell, C.J., 2006. Performance of DNAPL Source Depletion Technologies at 59 Chlorinated Solvent-Impacted Sites. Groundwater Monitoring & Remediation. Volume 26, Issue 1, pp. 73-84.  [https://doi.org/10.1111/j.1745-6592.2006.00054.x DOI: 10.1111/j.1745-6592.2006.00054.x]&nbsp;&nbsp; [https://www.provectusenvironmental.com/marketing/p-ox1/McGuire%20et%20al%202006.pdf Free download.pdf]</ref><ref name="Krembs2010">Krembs, F., Siegrist, R., Crimi, M., Furrer, R., and Petri, B., 2010. ISCO for Groundwater Remediation: Analysis of Field Applications and Performance. Groundwater Monitoring & Remediation, 30(4), pp. 42-53.  [https://doi.org/10.1111/j.1745-6592.2010.01312.x DOI: 10.1111/j.1745-6592.2010.01312.x]</ref> and has the potential to occur at ''in situ'' bioremediation sites after the depletion of electron donors<ref name="Adamson2011">Adamson, D., McGuire, T., Newell, C., and Stroo, H., 2011. Sustained Treatment: Implications for Treatment Timescales Associated with Source-Depletion Technologies. Remediation, 21(2), pp. 27-50.  [https://doi.org/10.1002/rem.20280 DOI: 10.1002/rem.20280]</ref>.
 
  
Currently, there are limited remediation options available to treat residual contamination trapped in low ''k'' zones. Low ''k'' settings limit the applicability and effectiveness of conventional remediation technologies due to the constraint on fluid introduction and recovery. As such, methods relying on extraction, recirculation, or reagent delivery and distribution are often limited in their effectiveness. For the long lived, difficult to treat sites, innovative technologies are needed that will reliably address mass flux limitations of contaminants leaving low ''k'' source zones, and also increase the actual treatment of the contaminants leaving these low ''k'' zones by enhancing natural attenuation processes. Two innovative technologies investigated by ESTCP are summarized below.
+
==Background==
 +
[[File:ChangFig2.png | thumb | 400px| Figure 1. Example of instrumentation used for OPTICS monitoring.]]
 +
[[File:ChangFig1.png | thumb | 400px| Figure 2. Schematic diagram illustrating the OPTICS methodology. High resolution in-situ data are integrated with traditional discrete sample analytical data using partial least-square regression to derive high resolution chemical contaminant concentration data series.]]
 +
Nationwide, the liability due to contaminated sediments is estimated in the trillions of dollars. Stakeholders are assessing and developing remedial strategies for contaminated sediment sites in major harbors and waterways throughout the U.S. The mobility of contaminants in surface water is a primary transport and risk mechanism<ref>Thibodeaux, L.J., 1996. Environmental Chemodynamics: Movement of Chemicals in Air, Water, and Soil, 2nd Edition, Volume 110 of Environmental Science and Technology: A Wiley-Interscience Series of Texts and Monographs. John Wiley & Sons, Inc. 624 pages. ISBN: 0-471-61295-2</ref><ref>United States Environmental Protection Agency (USEPA), 2005. Contaminated Sediment Remediation Guidance for Hazardous Waste Sites. Office of Superfund Remediation and Technology Innovation Report, EPA-540-R-05-012. [[Media: 2005-USEPA-Contaminated_Sediment_Remediation_Guidance.pdf | Report.pdf]]</ref><ref>Lick, W., 2008. Sediment and Contaminant Transport in Surface Waters. CRC Press. 416 pages. [https://doi.org/10.1201/9781420059885 doi:  10.1201/9781420059885]</ref>; therefore, long-term monitoring of both particulate- and dissolved-phase contaminant concentration prior to, during, and following remedial action is necessary to document remedy effectiveness. Source control and total maximum daily load (TMDL) actions generally require costly manual monitoring of dissolved and particulate contaminant concentrations in surface water. The magnitude of cost for these actions is a strong motivation to implement efficient methods for long-term source control and remedial monitoring.  
  
==“Grout Bomber”==
+
Traditional surface water monitoring requires mobilization of field teams to manually collect discrete water samples, send samples to laboratories, and await laboratory analysis so that a site evaluation can be conducted. These traditional methods are well known to have inherent cost and safety concerns and are of limited use (due to safety concerns and standby requirements for resources) in capturing the effects of episodic events (e.g., storms) that are important to consider in site risk assessment and remedy selection. Automated water samplers are commercially available but still require significant field support and costly laboratory analysis. Further, automated samplers may not be suitable for analytes with short hold-times and temperature requirements.  
===Technology Description===
 
[[File:Richardson1w2Fig3.png | thumb | left | 400px | Figure 3. a) Grout Bomber equipment; b) hopper for mixing and delivery of grout to the “stitcher”; and c) grout exiting the mandrel]]
 
[[File:Richardson1w2Fig4.png | thumb | left | 400px | Figure 4. Application of the Bomber technology for contaminated sites in low ''k'' materials.]]
 
[[File:Richardson1w2Fig5.png | thumb | left | 400px | Figure 5. Chlorinated ethene concentrations at well pair (CMT-1 and IS17MW04).]]
 
The geotechnical industry offers a variety of well-established techniques for quickly and efficiently accessing the subsurface for the purposes of ground stabilization, foundation rehabilitation, porewater drainage, and structural support. The speed and efficiency of these techniques can also be a major advantage for emplacement of remedial amendments into the subsurface. One promising approach is the Grout Bomber, a larger adaptation of conventional cement or compaction grouting techniques for subsurface stabilization. The technology uses an excavator equipped with specialized equipment (a “stitcher”) to quickly push a mandrel (3.5 in. diameter hollow cylindrical rod) into the subsurface and subsequently fill the hole and subsurface voids with cement grout (from bottom to top) using an in-line grout delivery system. The typical arrangement of the Grout Bomber technology includes the installation rig (excavator with the “stitcher” mast; see Figure 3a) and an on-site grout mixing and delivery unit consisting of mixing hopper, pumps, hosing, and power supply. Raw materials are loaded into the mixing hopper (see Figure 3b) where it is mixed to the appropriate consistency, then pumped to the Bomber rig at a rate of approximately 0.25 cubic feet per pump stroke. At the exit end of the Bomber mandrel (see Figure 3c), the grout flows in a continuous and uniform manner, allowing the columns to be emplaced with grout while the mandrel (which was pushed into the subsurface) is lifted to the surface.  Hundreds of closely spaced vertical grout columns can be installed per day using this technology.
 
  
For environmental applications, the Grout Bomber approach can be “repurposed” as a means to improve delivery of remediation amendments into contaminated treatment zones in low ''k'' materials. The remedial amendment (e.g., mixture of zero-valent iron (ZVI), sand, neat oil) can replace the grout and be directly placed into the subsurface from bottom to top (not injected into the surrounding formation), creating hundreds of reaction columns. The Bomber technology offers the following benefits:  
+
Optically-based characterization of surface water contaminants is a cost-effective alternative to traditional discrete water sampling methods. Unlike discrete water sampling, which typically results in sparse data at low resolution, and therefore, is of limited use in determining mass loading, OPTICS (OPTically-based In-situ Characterization System) provides continuous data and allows for a complete understanding of water quality and contaminant transport in response to natural processes and human impacts<ref name="ChangEtAl2019"/><ref name="ChangEtAl2018"/><ref name="ChangEtAl2024"/><ref>Bergamaschi, B.A., Fleck, J.A., Downing, B.D., Boss, E., Pellerin, B., Ganju, N.K., Schoellhamer, D.H., Byington, A.A., Heim, W.A., Stephenson, M., Fujii, R., 2011. Methyl mercury dynamics in a tidal wetland quantified using in situ optical measurements. Limnology and Oceanography, 56(4), pp. 1355-1371. [https://doi.org/10.4319/lo.2011.56.4.1355 doi: 10.4319/lo.2011.56.4.1355]&nbsp;&nbsp; [[Media: BergamaschiEtAl2011.pdf | Open Access Article]]</ref><ref>Bergamaschi, B.A., Fleck, J.A., Downing, B.D., Boss, E., Pellerin, B.A., Ganju, N.K., Schoellhamer, D.H., Byington, A.A., Heim, W.A., Stephenson, M., Fujii, R., 2012. Mercury Dynamics in a San Francisco Estuary Tidal Wetland: Assessing Dynamics Using In Situ Measurements. Estuaries and Coasts, 35, pp. 1036-1048. [https://doi.org/10.1007/s12237-012-9501-3 doi: 10.1007/s12237-012-9501-3]&nbsp;&nbsp; [[Media: BergamaschiEtAl2012a.pdf | Open Access Article]]</ref><ref>Bergamaschi, B.A., Krabbenhoft, D.P., Aiken, G.R., Patino, E., Rumbold, D.G., Orem, W.H., 2012. Tidally driven export of dissolved organic carbon, total mercury, and methylmercury from a mangrove-dominated estuary. Environmental Science and Technology, 46(3), pp. 1371-1378. [https://doi.org/10.1021/es2029137 doi: 10.1021/es2029137]&nbsp;&nbsp; [[Media: BergamaschiEtAl2012b.pdf | Open Access Article]]</ref>. The OPTICS tool integrates commercial off-the-shelf ''in situ'' aquatic sensors (Figure 1), periodic discrete surface water sample collection, and a multi-parameter statistical prediction model<ref name="deJong1993">de Jong, S., 1993. SIMPLS: an alternative approach to partial least squares regression. Chemometrics and Intelligent Laboratory Systems, 18(3), pp. 251-263. [https://doi.org/10.1016/0169-7439(93)85002-X doi: 10.1016/0169-7439(93)85002-X]</ref><ref name="RosipalKramer2006">Rosipal, R. and Krämer, N., 2006. Overview and Recent Advances in Partial Least Squares, In: Subspace, Latent Structure, and Feature Selection: Statistical and Optimization Perspectives Workshop, Revised Selected Papers (Lecture Notes in Computer Science, Volume 3940), Springer-Verlag, Berlin, Germany. pp. 34-51. [https://doi.org/10.1007/11752790_2 doi: 10.1007/11752790_2]</ref> to provide high temporal and/or spatial resolution characterization of surface water chemicals of potential concern (COPCs) (Figure 2).
* '''Reduces uncertainty: '''
 
The Bomber technology circumvents the “delivery problem” associated with conventional injection-based remediation approaches, particularly in low ''k'' zones. The closely spaced nature of the reaction columns (2-3 ft spacing) reduces the diffusion lengths out of low ''k'' zones and also the uncertainty associated with amendment delivery because contaminants are always < 1 - 1.5 ft from an active treatment zone (see Figure 4).  
 
  
* '''Rapid installation of reaction columns: '''
+
==Technology Overview==
The Grout Bomber can install 100+ reaction columns per day to depths of 40-50 ft below ground surface (bgs) to encourage contaminant degradation in source zones. Since the Grout Bomber is a direct push technique, it is better suited to silts and clays with blow counts < 35. Consolidated materials with higher blow counts will require additional equipment to pre-drill the columns prior to amendment emplacement. In general, this technology represents a much simpler, less intensive, and easier to install version of complete soil mixing.  
+
The principle behind OPTICS is based on the relationship between optical properties of natural waters and the particles and dissolved material contained within them<ref>Boss, E. and Pegau, W.S., 2001. Relationship of light scattering at an angle in the backward direction to the backscattering coefficient. Applied Optics, 40(30), pp. 5503-5507. [https://doi.org/10.1364/AO.40.005503 doi: 10.1364/AO.40.005503]</ref><ref>Boss, E., Twardowski, M.S., Herring, S., 2001. Shape of the particulate beam spectrum and its inversion to obtain the shape of the particle size distribution. Applied Optics, 40(27), pp. 4884-4893. [https://doi.org/10.1364/AO.40.004885 doi:10/1364/AO.40.004885]</ref><ref>Babin, M., Morel, A., Fournier-Sicre, V., Fell, F., Stramski, D., 2003. Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration. Limnology and Oceanography, 48(2), pp. 843-859. [https://doi.org/10.4319/lo.2003.48.2.0843 doi: 10.4319/lo.2003.48.2.0843]&nbsp;&nbsp; [[Media: BabinEtAl2003.pdf | Open Access Article]]</ref><ref>Coble, P., Hu, C., Gould, R., Chang, G., Wood, M., 2004. Colored dissolved organic matter in the coastal ocean: An optical tool for coastal zone environmental assessment and management. Oceanography, 17(2), pp. 50-59. [https://doi.org/10.5670/oceanog.2004.47 doi: 10.5670/oceanog.2004.47]&nbsp;&nbsp; [[Media: CobleEtAl2004.pdf | Open Access Article]]</ref><ref>Sullivan, J.M., Twardowski, M.S., Donaghay, P.L., Freeman, S.A., 2005. Use of optical scattering to discriminate particle types in coastal waters. Applied Optics, 44(9), pp. 1667–1680. [https://doi.org/10.1364/AO.44.001667 doi: 10.1364/AO.44.001667]</ref><ref>Twardowski, M.S., Boss, E., Macdonald, J.B., Pegau, W.S., Barnard, A.H., Zaneveld, J.R.V., 2001. A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters. Journal of Geophysical Research: Oceans, 106(C7), pp. 14,129-14,142. [https://doi.org/10.1029/2000JC000404 doi: 10/1029/2000JC000404]&nbsp;&nbsp; [[Media: TwardowskiEtAl2001.pdf | Open Access Article]]</ref><ref>Chang, G.C., Barnard, A.H., McLean, S., Egli, P.J., Moore, C., Zaneveld, J.R.V., Dickey, T.D., Hanson, A., 2006. In situ optical variability and relationships in the Santa Barbara Channel: implications for remote sensing. Applied Optics, 45(15), pp. 3593–3604. [https://doi.org/10.1364/AO.45.003593 doi: 10.1364/AO.45.003593]</ref><ref>Slade, W.H. and Boss, E., 2015. Spectral attenuation and backscattering as indicators of average particle size. Applied Optics, 54(24), pp. 7264-7277. [https://doi.org/10.1364/AO.54.007264 doi: 10/1364/AO.54.007264]&nbsp;&nbsp; [[Media: SladeBoss2015.pdf | Open Access Article]]</ref>. Surface water COPCs such as heavy metals and polychlorinated biphenyls (PCBs) are hydrophobic in nature and tend to sorb to materials in the water column, which have unique optical signatures that can be measured at high-resolution using ''in situ'', commercially available aquatic sensors<ref>Agrawal, Y.C. and Pottsmith, H.C., 2000. Instruments for particle size and settling velocity observations in sediment transport. Marine Geology, 168(1-4), pp. 89-114. [https://doi.org/10.1016/S0025-3227(00)00044-X doi: 10.1016/S0025-3227(00)00044-X]</ref><ref>Boss, E., Pegau, W.S., Gardner, W.D., Zaneveld, J.R.V., Barnard, A.H., Twardowski, M.S., Chang, G.C., Dickey, T.D., 2001. Spectral particulate attenuation and particle size distribution in the bottom boundary layer of a continental shelf. Journal of Geophysical Research: Oceans, 106(C5), pp. 9509-9516. [https://doi.org/10.1029/2000JC900077  doi: 10.1029/2000JC900077]&nbsp;&nbsp; [[Media: BossEtAl2001.pdf | Open Access Article]]</ref><ref>Boss, E., Pegau, W.S., Lee, M., Twardowski, M., Shybanov, E., Korotaev, G. Baratange, F., 2004. Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution. Journal of Geophysical Research: Oceans, 109(C1), Article C01014. [https://doi.org/10.1029/2002JC001514 doi: 10.1029/2002JC001514]&nbsp;&nbsp; [[Media: BossEtAl2004.pdf | Open Access Article]]</ref><ref>Briggs, N.T., Slade, W.H., Boss, E., Perry, M.J., 2013. Method for estimating mean particle size from high-frequency fluctuations in beam attenuation or scattering measurement. Applied Optics, 52(27), pp. 6710-6725. [https://doi.org/10.1364/AO.52.006710 doi: 10.1364/AO.52.006710]&nbsp;&nbsp; [[Media: BriggsEtAl2013.pdf | Open Access Article]]</ref>. Therefore, high-resolution concentrations of COPCs can be accurately and robustly derived from ''in situ'' measurements using statistical methods.
  
* '''Accommodates various amendment types: '''
+
The OPTICS method is analogous to the commonly used empirical derivation of total suspended solids concentration (TSS) from optical turbidity using linear regression<ref>Rasmussen, P.P., Gray, J.R., Glysson, G.D., Ziegler, A.C., 2009. Guidelines and procedures for computing time-series suspended-sediment concentrations and loads from in-stream turbidity-sensor and streamflow data. In: Techniques and Methods, Book 3: Applications of Hydraulics, Section C: Sediment and Erosion Techniques, Ch. 4. 52 pages. U.S. Geological Survey.&nbsp;&nbsp; [[Media: RasmussenEtAl2009.pdf | Open Access Article]]</ref>. However, rather than deriving one response variable (TSS) from one predictor variable (turbidity), OPTICS involves derivation of one response variable (e.g., PCB concentration) from a suite of predictor variables (e.g., turbidity, temperature, salinity, and fluorescence of chlorophyll-a) using multi-parameter statistical regression. OPTICS is based on statistical correlation – similar to the turbidity-to-TSS regression technique. The method does not rely on interpolation or extrapolation.  
In one example<ref name="Richardson2020"/>, vertical reaction columns containing a mixture of ZVI, vegetable oil, sand and minor amounts of water were installed to a depth of 30 ft bgs in a low ''k'' treatment area consisting primarily of silts, sandy clays, and lean clays<ref name="Divine2018"/>. The ZVI-sand-oil mixture was designed to have a similar consistency (or viscosity) to cement grout, thus requiring no major alterations to the existing Bomber equipment for the project. Recommended practices to ensure uninterrupted flow of amendments to the Bomber mandrel include:
 
** Conduct simple pumping pilot studies with amendments of varying consistencies,  
 
** Consult with a well trained pump operator, and  
 
** Minimize the length of hosing between mixing hopper pump and Bomber mandrel.  
 
  
* '''Cost effective source zone treatment: '''
+
The OPTICS technique utilizes partial least-squares (PLS) regression to determine a combination of physical, optical, and water quality properties that best predicts chemical contaminant concentrations with high variance. PLS regression is a statistically based method combining multiple linear regression and principal component analysis (PCA), where multiple linear regression finds a combination of predictors that best fit a response and PCA finds combinations of predictors with large variance<ref name="deJong1993"/><ref name="RosipalKramer2006"/>. Therefore, PLS identifies combinations of multi-collinear predictors (''in situ'', high-resolution physical, optical, and water quality measurements) that have large covariance with the response values (discrete surface water chemical contaminant concentration data from samples that are collected periodically, coincident with ''in situ'' measurements). PLS combines information about the variances of both the predictors and the responses, while also considering the correlations among them. PLS therefore provides a model with reliable predictive power.
Estimated treatment costs associated with emplacement of amendments with the Grout Bomber are ~$35 per cubic yard of source zone treated (including contractor labor, equipment, and materials). This is generally less than the reported unit cost for ''in situ'' biodegradation ($20-$80/yd<sup>3</sup>) and significantly less than chemical oxidation ($125/yd<sup>3</sup>) and thermal remediation (median $200/yd<sup>3</sup>)<ref name="McDade2005">McDade, J.M., T.M. McGuire, and Newell, C.J., 2005. Analysis of DNAPL Source Depletion Costs at 36 Field Sites, Remediation, 15(2), pp. 9-18.  [https://doi.org/10.1002/rem.20039 DOI: 10.1002/rem.20039]</ref>.
 
  
===Operational Approach & Results===
+
OPTICS ''in situ'' measurement parameters include, but are not limited to current velocity, conductivity, temperature, depth, turbidity, dissolved oxygen, and fluorescence of chlorophyll-a and dissolved organic matter. Instrumentation for these measurements is commercially available, robust, deployable in a wide variety of configurations (e.g., moored, vessel-mounted, etc.), powered by batteries, and records data internally and/or transmits data in real-time. The physical, optical, and water quality instrumentation is compact and self-contained. The modularity and automated nature of the OPTICS measurement system enables robust, long-term, autonomous data collection for near-continuous monitoring.  
A field demonstration was conducted at Site 17, Naval Support Facility Indian Head, Maryland. The treatment area consists primarily of silts, sandy clays, and lean clays with TCE concentrations in soil and groundwater of up to 250 mg/kg and 400 mg/L, respectively. Eight hundred reaction columns (consisting of ZVI/sand or oil/sand), were installed 2-3 ft apart, to a depth of 30 ft bgs at the site. Approximately 100 reaction columns were installed per day, with the most productive day totaling 180 columns. During operation, installation time for each reaction column was on the order of 1-2 minutes. Overall, 77,000 lbs of ZVI and 650 gallons of vegetable oil were emplaced within the source area of ~5,000 ft<sup>2</sup>.  
 
  
===Performance Results===
+
[[File:ChangFig3.png | thumb | 400px| Figure 3. OPTICS to characterize COPC variability in the context of site processes at BCSA. (A) Tidal oscillations (Elev.<sub>MSL</sub>) and precipitation (Precip.). (B) (D) OPTICS-derived particulate mercury (PHg) and methylmercury (PMeHg) and total PCBs (TPCBs). Open circles represent discrete water sample data.]] OPTICS measurements are provided at a significantly reduced cost relative to traditional monitoring techniques used within the environmental industry. Cost performance analysis shows that monitoring costs are reduced by more than 85% while significantly increasing the temporal and spatial resolution of sampling. The reduced cost of monitoring makes this technology suitable for a number of environmental applications including, but not limited to site baseline characterization, source control evaluation, dredge or stormflow plume characterization, and remedy performance monitoring. OPTICS has been successfully demonstrated for characterizing a wide variety of COPCs: mercury, methylmercury, copper, lead, PCBs, dichlorodiphenyltrichloroethane (DDT) and its related compounds (collectively, DDX), and 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD or dioxin) in a number of different environmental systems ranging from inland lakes and rivers to the coastal ocean. To date, OPTICS has been limited to surface water applications. Additional applications (e.g., groundwater) would require further research and development.
Ongoing post installation monitoring of treatment area groundwater has found moderate reductions in TCE in site monitoring wells and that key degradation products that serve as indicators for both abiotic and biotic mechanisms (i.e., acetylene, ethene/ethane) are present. Samples from Continuous Multilevel Tubing (CMT) wells installed within reaction columns (anulus filled with ZVI amendment) have demonstrated 1-3 orders of magnitude reductions in TCE relative to the surrounding formation water (see Figure 5). These results provide evidence that the reaction columns are creating steep concentration gradients that could drive contaminants out of low permeability zones. Further, gaseous products (e.g., propane, propene, i-butane, n-butane, n-pentane, n-hexane) were detected in the unsaturated zone of several reaction columns further supporting abiotic TCE degradation. Results of this full scale project were very promising and, although several operational improvements were identified (e.g., improved pumpability of ZVI/sand mixture; minor equipment modifications; improved site prep practices), the Bomber technology has the potential to be an important remediation alternative for hard-to-treat chlorinated source zones, particularly ones with large, persistent matrix diffusion sources over large areas.
 
  
==Horizontal Reactive Treatment Well (HRX Well<sup><small>&reg;</small></sup>)==
+
==Applications==
{| class="wikitable" style="margin-left: auto; margin-right: 30px; float:left; text-align:center;"
+
[[File:ChangFig4.png | thumb | 400px| Figure 4. OPTICS reveals baseflow daily cycling and confirms storm-induced particle-bound COPC resuspension and mobilization through bank interaction. (A) Flow rate (Q) and precipitation (Precip). (B) (C) OPTICS-derived particulate mercury (PHg) and methylmercury (PMeHg). Open circles represent discrete water sample data.]]
|+ Table 1. Potential reactive media types and target groundwater contaminants for an HRX Well<sup>&reg;</sup>
+
[[File:ChangFig5.png | thumb | 400px| Figure 5. Three-dimensional volume plot of high spatial resolution OPTICS-derived PCBs in exceedance of baseline showing that PCBs were discharged from the outfall (yellow arrow), remained in suspension, and dispersed elsewhere before settling.]]
|-
+
An OPTICS study was conducted at Berry’s Creek Study Area (BCSA), New Jersey in 2014 and 2015 to understand COPC sources and transport mechanisms for development of an effective remediation plan. OPTICS successfully extended periodic discrete surface water samples to continuous, high-resolution measurements of PCBs, mercury, and methylmercury to elucidate COPC sources and transport throughout the BCSA tidal estuary system. OPTICS provided data at resolution sufficient to investigate COC variability in the context of physical processes. The results (Figure 3) facilitated focused and effective site remediation and management decisions that could not be determined based on periodic discrete samples alone, despite over seven years of monitoring at different locations throughout the system over a range of different seasons, tidal phases, and environmental conditions. The BCSA OPTICS methodology and its results have undergone official peer review overseen by the U.S. Environmental Protection Agency (USEPA), and those results have been published in peer-reviewed literature<ref name="ChangEtAl2019"/>.  
! Reactive Media !! Potential Target Groundwater Contaminants
 
|-
 
| Zero valent iron (ZVI)</br>Bimetallics (e.g., ZVI + Pd, Pt, or Ni) || Chlorinated solvents (CVOCs), nitrate, perchlorate, energetics, chromium, arsenic
 
|-  
 
| Granulated activated carbon (GAC)</br>Organosilicates || CVOCs, Poly- and Perfluoroalkyl substances (PFASs), hydrocarbons, halomethanes
 
|-
 
| Sustained Release Oxidants || CVOCs, 1,4-dioxane, hydrocarbons,</br>polyaromatic hydrocarbons (PAHs), phenolic compounds
 
|-
 
| Biodegradable particulate organic carbon</br>(e.g., mulch) || CVOCs, nitrate, perchlorate, energetics
 
|-
 
| Ion exchange resins || PFAS, brines
 
|-
 
| Phosphates (e.g., apatite) || Lead, uranium, other metals and radionuclides
 
|-
 
| Limestone, lime, magnesium oxide || Low pH, acid rock drainage
 
|-
 
| Barium sulfate (barite) || Radium
 
|-
 
| Iron sulfide || Chromium, high pH
 
|-
 
| Zeolites || Ammonium, radionuclides, PFAS
 
|}
 
[[File:Richardson1w2Fig6.png | thumb | 400px | Figure 6.  Conceptual HRX Well design<ref name="Divine2018a"/>. Groundwater (blue flowlines) is passively focused and flows into the fully screened HRX Well where it is treated as it flows through reactive media before exiting back into the aquifer. The hot colors represent high contaminant concentrations and cool colors represent treated water.]]
 
[[File:Richardson1w2Fig7.png | thumb | 400px | Figure 7. HRX Well completion demonstrating the minimal surface footprint requirement.]]
 
  
 +
OPTICS was applied at the South River, Virginia in 2016 to quantify sources of legacy mercury in the system that are contributing to recontamination and continued elevated mercury concentrations in fish tissue. OPTICS provided information necessary to identify mechanisms for COPC redistribution and to quantify the relative contribution of each mechanism to total mass transport of mercury and methylmercury in the system. Continuous, high-resolution COPC data afforded by OPTICS helped resolve baseflow daily cycling that had never before been observed at the South River (Figure 4) and provided data at temporal resolution necessary to verify storm-induced particle-bound COC resuspension and mobilization through bank interaction. The results informed source control and remedy design and monitoring efforts. Methodology and results from the South River have been published in peer-reviewed literature<ref name="ChangEtAl2018"/>.
  
The Horizontal Reactive Media Treatment Well (HRX Well<sup>&reg;</sup>)<ref name="Divine2013"> Divine, C.E., Leone, G., Gillow, J, Roth, T., Brenton, H., and Spurlin, M., 2013. Horizontal In-well Treatment System and Source Area Bypass System and Method for Groundwater Remediation. U.S. Patent US8596351 B2. U.S. Patents and Trademarks Office, Alexandria, VA.    [[Media: HRXwellPatent.pdf  Patent.pdf ]]</ref><ref name="Divine2018a"/><ref name="Divine2018"/> is a new passive flux-control technology that utilizes large diameter horizontal wells filled with solid phase reactive media to treat contaminated groundwater ''in situ''.  The HRX Well is installed parallel to the direction of groundwater flow and the design leverages natural “flow focusing” behavior induced by the engineered contrast in hydraulic conductivity between the reactive media and the ambient aquifer hydraulic conductivity to passively capture and treat proportionally large volumes of groundwater within the well. Treated groundwater then exits the horizontal well along its down-gradient sections (Figure 6). The HRX Well can quickly reduce contaminant mass flux and control migration, however it will not directly treat source mass or contamination located in low permeability zones. It requires a limited above-ground footprint (Figure 7) and can be installed under buildings or other surface infrastructure.  In involves no active groundwater management or above ground treatment systems, and minimal ongoing maintenance (except for periodic media replacement as the media becomes exhausted). As shown in Table 1, many different types of solid reactive media are already available; therefore, this concept could be used to address a wide range of contaminants. Note that it is anticipated that solid phase media would be used in most applications, however, other media types or treatment processes could conceivably be employed. It is expected that reactive media use would be more efficient, and its eventual replacement would be simpler and less costly for an HRX Well than for a conventional [[Zerovalent Iron Permeable Reactive Barriers | Permeable Reactive Barrier (PRB)]].
+
The U.S. Department of Defense’s Environmental Security Technology Certification Program (ESTCP) supported an OPTICS demonstration study at the Pearl Harbor Sediment Site, Hawaii, to determine whether stormwater from Oscar 1 Pier outfall is a contributing source of PCBs to Decision Unit (DU) N-2 (ESTCP Project ER21-5021). High spatial resolution results afforded by ship-based, mobile OPTICS monitoring suggested that PCBs were discharged from the outfall, remained in suspension, and dispersed elsewhere before settling (Figure 5). More details regarding this study were presented by Chang et al. in 2024<ref name="ChangEtAl2024"/>.
  
For relatively thin aquifers, the vertically averaged capture and treatment zone width (''w<sub><small>ave</small></sub>'') for an individual well can be estimated through a simple manipulation of Darcy’s Law<ref name="Divine2018a"/>:
+
==Summary==
::{|
+
OPTICS provides:
| Equation 1.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; ||'''''<big>w'''<sub><small>ave</small></sub>''' = <sup>(K<sub><small>HRX</small></sub> &pi; r<sub><small>HRX</small></sub><sup>2</sup> i<sub><small>HRX</small></sub>)</sup> &frasl; <sub>(K<sub><small>A</small></sub> b<sub><small>A</small></sub> i<sub><small>A</small></sub>)</sub></big>'''''
+
*High resolution surface water chemical contaminant characterization
|-
+
*Cost-effective monitoring and assessment
| Where:&nbsp;&nbsp;&nbsp;&nbsp;
+
*Versatile and modular monitoring with capability for real-time telemetry
|-
+
*Data necessary for development and validation of conceptual site models
| ''K<sub><small>HRX</small></sub>'' || is the hydraulic conductivity of the treatment media,
+
*A key line of evidence for designing and evaluating remedies.
|-
 
| ''r<sub><small>HRX</small></sub>'' || is the radius of the HRX Well,
 
|-
 
| ''i<sub><small>HRX</small></sub>'' || is the hydraulic gradient along the HRX Well,
 
|-
 
| ''K<sub><small>A</small></sub>'' || is the average hydraulic conductivity of the aquifer,
 
|-
 
| ''b<sub><small>A</small></sub>'' || is the targeted aquifer zone thickness, and
 
|-
 
| ''i<sub><small>A</small></sub>'' || is the ambient aquifer hydraulic gradient. 
 
|}
 
In all cases, ''i<sub><small>HRX</small></sub>'' < ''i<sub><small>A</small></sub>'', but for short wells, ''i<sub><small>HRX</small></sub>'' << ''i<sub><small>A</small></sub>'', and ''w<sub><small>ave</small></sub>'' is small. However, for long wells (several hundred feet or more), the difference between the hydraulic gradients diminishes. When used as a screening calculation, ''i<sub><small>HRX</small></sub>'' and ''i<sub><small>A</small></sub>'' can be assumed to be approximately equal in many cases. By inspection of Equation 1, it is clear that ''w<sub><small>ave</small></sub>'' increases as the permeability contrast between the aquifer and reactive media increases, and therefore this approach may be practical and cost effective for many moderate and lower permeability sites.  If necessary, multiple HRX Wells can be installed side by side to achieve target treatment widths.
 
  
{| style="float:left; margin-left:auto; margin-right:30px;
+
Because OPTICS monitoring involves deployment of autonomous sampling instrumentation, a substantially greater volume of data can be collected using this technique compared to traditional sampling, and at a far lower cost. A large volume of data supports evaluation of chemical contaminant concentrations over a range of spatial and temporal scales, and the system can be customized for a variety of environmental applications. OPTICS helps quantify contaminant mass flux and the relative contribution of local transport and source areas to net contaminant transport. OPTICS delivers a strong line of evidence for evaluating contaminant sources, fate, and transport, and for supporting the design of a remedy tailored to address site-specific, risk-driving conditions. The improved understanding of site processes aids in the development of mitigation measures that minimize site risks.  
| [[File:Richardson1w2Fig8.png | thumb | 480px | Figure 8.  Changes in groundwater flow characteristics before and after HRX Well installation showing the hydraulic effects of water discharging from the outlet screen. Posted and contoured values are groundwater elevations in feet above mean sea level.]]
 
| [[File:Richardson1w2Fig9.png | thumb | 400px | Figure 9. HRX Well installed at VAFB showing groundwater inflow (blue curved lines) and approximate outlet zone (shaded blue cone). Posted values represent reductions in TCE concentrations observed 436 days after HRX Well installation.]]
 
|}
 
The HRX Well concept has been evaluated with numerical models and physical sand tank experiments<ref name="Divine2018a"/><ref name="Divine2018"/>, and the first field scale installation of this technology was completed in August 2018 at Vandenberg Air Force Base (VAFB) in Central California. This purpose of the HRX Well is to control trichloroethene (TCE) flux in a thin (7 to 12 ft) low permeability aquifer (average hydraulic conductivity is approximately 0.1 to 0.5 ft/day) impacted at concentrations up to about 30 to 50 milligrams per liter (mg/L).  The HRX Well consists of 85 ft of inlet screen and 70 ft of outlet screen separated by 165 ft of casing, with removeable treatment media cartridges (35 percent ZVI by weight, media hydraulic conductivity is approximately 100 ft/d) installed in 70 ft of the cased section.  Hydraulic performance data (as shown in Figure 8) and treatment effectiveness data (Figure 9) indicate the following:
 
* The capture and treatment zone for this single HRX Well exceeded 50 ft, consistent with estimates predicted by Equation 1.
 
* TCE concentrations were reduced by more than 99.99% based on concentrations at the HRX Well outlet.
 
* Initial treatment response was observed in nearby monitoring wells generally within 150 days after HRX Well installation, which is consistent with the design model.
 
* 436 days after HRX Well installation, the TCE concentration in treatment wells was reduced by an average of 63%.
 
 
 
For this site, the HRX Well concept compared favorably in terms of sustainability, relative to pump and treat (P&T) and conventional trench based PRB approaches. The system operates passively ''in situ'', therefore, the recurring and cumulative energy requirements, carbon footprint, life cycle water consumption, recurring material use, and waste generation are low, and are primarily associated with replacement of treatment media.  For the VAFB site, ZVI is contained in removable cartridges that are anticipated to require replacement every five to 10 years.  However, media replacement frequency is site specific and a function of contaminant loading and treatment media volume and characteristics. Lifecycle cost estimates for full-scale 30-yr systems also compared favorably: $2.5M to $3.1M for a three well HRX Well system, $3.8M to $4.7M for a P&T system, and $3.6M to $4.5M for a PRB design.  
 
  
 
==References==
 
==References==
 
+
<references />
<references/>
 
  
 
==See Also==
 
==See Also==

Latest revision as of 20:39, 15 July 2024

Assessing Vapor Intrusion (VI) Impacts in Neighborhoods with Groundwater Contaminated by Chlorinated Volatile Organic Chemicals (CVOCs)

The VI Diagnosis Toolkit[1] is a set of tools that can be used individually or in combination to assess vapor intrusion (VI) impacts at one or more buildings overlying regional-scale dissolved chlorinated solvent-impacted groundwater plumes. The strategic use of these tools can lead to confident and efficient neighborhood-scale VI pathway assessments.

Related Article(s):

Contributor(s):

  • Paul C. Johnson, Ph.D.
  • Paul Dahlen, Ph.D.
  • Yuanming Guo, Ph.D.

Key Resource(s):

  • The VI Diagnosis Toolkit for Assessing Vapor Intrusion Pathways and Impacts in Neighborhoods Overlying Dissolved Chlorinated Solvent Plumes, ESTCP Project ER-201501, Final Report[1]
  • CPM Test Guidelines: Use of Controlled Pressure Method Testing for Vapor Intrusion Pathway Assessment, ESTCP Project ER-201501, Technical Report[2]
  • VI Diagnosis Toolkit User Guide, ESTCP Project ER-201501[3]

Background

Figure 1. Example of instrumentation used for OPTICS monitoring.
Figure 2. Schematic diagram illustrating the OPTICS methodology. High resolution in-situ data are integrated with traditional discrete sample analytical data using partial least-square regression to derive high resolution chemical contaminant concentration data series.

Nationwide, the liability due to contaminated sediments is estimated in the trillions of dollars. Stakeholders are assessing and developing remedial strategies for contaminated sediment sites in major harbors and waterways throughout the U.S. The mobility of contaminants in surface water is a primary transport and risk mechanism[4][5][6]; therefore, long-term monitoring of both particulate- and dissolved-phase contaminant concentration prior to, during, and following remedial action is necessary to document remedy effectiveness. Source control and total maximum daily load (TMDL) actions generally require costly manual monitoring of dissolved and particulate contaminant concentrations in surface water. The magnitude of cost for these actions is a strong motivation to implement efficient methods for long-term source control and remedial monitoring.

Traditional surface water monitoring requires mobilization of field teams to manually collect discrete water samples, send samples to laboratories, and await laboratory analysis so that a site evaluation can be conducted. These traditional methods are well known to have inherent cost and safety concerns and are of limited use (due to safety concerns and standby requirements for resources) in capturing the effects of episodic events (e.g., storms) that are important to consider in site risk assessment and remedy selection. Automated water samplers are commercially available but still require significant field support and costly laboratory analysis. Further, automated samplers may not be suitable for analytes with short hold-times and temperature requirements.

Optically-based characterization of surface water contaminants is a cost-effective alternative to traditional discrete water sampling methods. Unlike discrete water sampling, which typically results in sparse data at low resolution, and therefore, is of limited use in determining mass loading, OPTICS (OPTically-based In-situ Characterization System) provides continuous data and allows for a complete understanding of water quality and contaminant transport in response to natural processes and human impacts[7][8][9][10][11][12]. The OPTICS tool integrates commercial off-the-shelf in situ aquatic sensors (Figure 1), periodic discrete surface water sample collection, and a multi-parameter statistical prediction model[13][14] to provide high temporal and/or spatial resolution characterization of surface water chemicals of potential concern (COPCs) (Figure 2).

Technology Overview

The principle behind OPTICS is based on the relationship between optical properties of natural waters and the particles and dissolved material contained within them[15][16][17][18][19][20][21][22]. Surface water COPCs such as heavy metals and polychlorinated biphenyls (PCBs) are hydrophobic in nature and tend to sorb to materials in the water column, which have unique optical signatures that can be measured at high-resolution using in situ, commercially available aquatic sensors[23][24][25][26]. Therefore, high-resolution concentrations of COPCs can be accurately and robustly derived from in situ measurements using statistical methods.

The OPTICS method is analogous to the commonly used empirical derivation of total suspended solids concentration (TSS) from optical turbidity using linear regression[27]. However, rather than deriving one response variable (TSS) from one predictor variable (turbidity), OPTICS involves derivation of one response variable (e.g., PCB concentration) from a suite of predictor variables (e.g., turbidity, temperature, salinity, and fluorescence of chlorophyll-a) using multi-parameter statistical regression. OPTICS is based on statistical correlation – similar to the turbidity-to-TSS regression technique. The method does not rely on interpolation or extrapolation.

The OPTICS technique utilizes partial least-squares (PLS) regression to determine a combination of physical, optical, and water quality properties that best predicts chemical contaminant concentrations with high variance. PLS regression is a statistically based method combining multiple linear regression and principal component analysis (PCA), where multiple linear regression finds a combination of predictors that best fit a response and PCA finds combinations of predictors with large variance[13][14]. Therefore, PLS identifies combinations of multi-collinear predictors (in situ, high-resolution physical, optical, and water quality measurements) that have large covariance with the response values (discrete surface water chemical contaminant concentration data from samples that are collected periodically, coincident with in situ measurements). PLS combines information about the variances of both the predictors and the responses, while also considering the correlations among them. PLS therefore provides a model with reliable predictive power.

OPTICS in situ measurement parameters include, but are not limited to current velocity, conductivity, temperature, depth, turbidity, dissolved oxygen, and fluorescence of chlorophyll-a and dissolved organic matter. Instrumentation for these measurements is commercially available, robust, deployable in a wide variety of configurations (e.g., moored, vessel-mounted, etc.), powered by batteries, and records data internally and/or transmits data in real-time. The physical, optical, and water quality instrumentation is compact and self-contained. The modularity and automated nature of the OPTICS measurement system enables robust, long-term, autonomous data collection for near-continuous monitoring.

Figure 3. OPTICS to characterize COPC variability in the context of site processes at BCSA. (A) Tidal oscillations (Elev.MSL) and precipitation (Precip.). (B) – (D) OPTICS-derived particulate mercury (PHg) and methylmercury (PMeHg) and total PCBs (TPCBs). Open circles represent discrete water sample data.

OPTICS measurements are provided at a significantly reduced cost relative to traditional monitoring techniques used within the environmental industry. Cost performance analysis shows that monitoring costs are reduced by more than 85% while significantly increasing the temporal and spatial resolution of sampling. The reduced cost of monitoring makes this technology suitable for a number of environmental applications including, but not limited to site baseline characterization, source control evaluation, dredge or stormflow plume characterization, and remedy performance monitoring. OPTICS has been successfully demonstrated for characterizing a wide variety of COPCs: mercury, methylmercury, copper, lead, PCBs, dichlorodiphenyltrichloroethane (DDT) and its related compounds (collectively, DDX), and 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD or dioxin) in a number of different environmental systems ranging from inland lakes and rivers to the coastal ocean. To date, OPTICS has been limited to surface water applications. Additional applications (e.g., groundwater) would require further research and development.

Applications

Figure 4. OPTICS reveals baseflow daily cycling and confirms storm-induced particle-bound COPC resuspension and mobilization through bank interaction. (A) Flow rate (Q) and precipitation (Precip). (B) – (C) OPTICS-derived particulate mercury (PHg) and methylmercury (PMeHg). Open circles represent discrete water sample data.
Figure 5. Three-dimensional volume plot of high spatial resolution OPTICS-derived PCBs in exceedance of baseline showing that PCBs were discharged from the outfall (yellow arrow), remained in suspension, and dispersed elsewhere before settling.

An OPTICS study was conducted at Berry’s Creek Study Area (BCSA), New Jersey in 2014 and 2015 to understand COPC sources and transport mechanisms for development of an effective remediation plan. OPTICS successfully extended periodic discrete surface water samples to continuous, high-resolution measurements of PCBs, mercury, and methylmercury to elucidate COPC sources and transport throughout the BCSA tidal estuary system. OPTICS provided data at resolution sufficient to investigate COC variability in the context of physical processes. The results (Figure 3) facilitated focused and effective site remediation and management decisions that could not be determined based on periodic discrete samples alone, despite over seven years of monitoring at different locations throughout the system over a range of different seasons, tidal phases, and environmental conditions. The BCSA OPTICS methodology and its results have undergone official peer review overseen by the U.S. Environmental Protection Agency (USEPA), and those results have been published in peer-reviewed literature[7].

OPTICS was applied at the South River, Virginia in 2016 to quantify sources of legacy mercury in the system that are contributing to recontamination and continued elevated mercury concentrations in fish tissue. OPTICS provided information necessary to identify mechanisms for COPC redistribution and to quantify the relative contribution of each mechanism to total mass transport of mercury and methylmercury in the system. Continuous, high-resolution COPC data afforded by OPTICS helped resolve baseflow daily cycling that had never before been observed at the South River (Figure 4) and provided data at temporal resolution necessary to verify storm-induced particle-bound COC resuspension and mobilization through bank interaction. The results informed source control and remedy design and monitoring efforts. Methodology and results from the South River have been published in peer-reviewed literature[8].

The U.S. Department of Defense’s Environmental Security Technology Certification Program (ESTCP) supported an OPTICS demonstration study at the Pearl Harbor Sediment Site, Hawaii, to determine whether stormwater from Oscar 1 Pier outfall is a contributing source of PCBs to Decision Unit (DU) N-2 (ESTCP Project ER21-5021). High spatial resolution results afforded by ship-based, mobile OPTICS monitoring suggested that PCBs were discharged from the outfall, remained in suspension, and dispersed elsewhere before settling (Figure 5). More details regarding this study were presented by Chang et al. in 2024[9].

Summary

OPTICS provides:

  • High resolution surface water chemical contaminant characterization
  • Cost-effective monitoring and assessment
  • Versatile and modular monitoring with capability for real-time telemetry
  • Data necessary for development and validation of conceptual site models
  • A key line of evidence for designing and evaluating remedies.

Because OPTICS monitoring involves deployment of autonomous sampling instrumentation, a substantially greater volume of data can be collected using this technique compared to traditional sampling, and at a far lower cost. A large volume of data supports evaluation of chemical contaminant concentrations over a range of spatial and temporal scales, and the system can be customized for a variety of environmental applications. OPTICS helps quantify contaminant mass flux and the relative contribution of local transport and source areas to net contaminant transport. OPTICS delivers a strong line of evidence for evaluating contaminant sources, fate, and transport, and for supporting the design of a remedy tailored to address site-specific, risk-driving conditions. The improved understanding of site processes aids in the development of mitigation measures that minimize site risks.

References

  1. ^ 1.0 1.1 Johnson, P.C., Guo, Y., Dahlen, P., 2020. The VI Diagnosis Toolkit for Assessing Vapor Intrusion Pathways and Mitigating Impacts in Neighborhoods Overlying Dissolved Chlorinated Solvent Plumes. ESTCP Project ER-201501, Final Report. Project Website   Final Report.pdf
  2. ^ Johnson, P.C., Guo, Y., Dahlen, P., 2021. CPM Test Guidelines: Use of Controlled Pressure Method Testing for Vapor Intrusion Pathway Assessment. ESTCP ER-201501, Technical Report. Project Website   Technical_Report.pdf
  3. ^ Johnson, P.C., Guo, Y., and Dahlen, P., 2022. VI Diagnosis Toolkit User Guide, ESTCP ER-201501, User Guide. Project Website   User_Guide.pdf
  4. ^ Thibodeaux, L.J., 1996. Environmental Chemodynamics: Movement of Chemicals in Air, Water, and Soil, 2nd Edition, Volume 110 of Environmental Science and Technology: A Wiley-Interscience Series of Texts and Monographs. John Wiley & Sons, Inc. 624 pages. ISBN: 0-471-61295-2
  5. ^ United States Environmental Protection Agency (USEPA), 2005. Contaminated Sediment Remediation Guidance for Hazardous Waste Sites. Office of Superfund Remediation and Technology Innovation Report, EPA-540-R-05-012. Report.pdf
  6. ^ Lick, W., 2008. Sediment and Contaminant Transport in Surface Waters. CRC Press. 416 pages. doi: 10.1201/9781420059885
  7. ^ 7.0 7.1 Cite error: Invalid <ref> tag; no text was provided for refs named ChangEtAl2019
  8. ^ 8.0 8.1 Cite error: Invalid <ref> tag; no text was provided for refs named ChangEtAl2018
  9. ^ 9.0 9.1 Cite error: Invalid <ref> tag; no text was provided for refs named ChangEtAl2024
  10. ^ Bergamaschi, B.A., Fleck, J.A., Downing, B.D., Boss, E., Pellerin, B., Ganju, N.K., Schoellhamer, D.H., Byington, A.A., Heim, W.A., Stephenson, M., Fujii, R., 2011. Methyl mercury dynamics in a tidal wetland quantified using in situ optical measurements. Limnology and Oceanography, 56(4), pp. 1355-1371. doi: 10.4319/lo.2011.56.4.1355   Open Access Article
  11. ^ Bergamaschi, B.A., Fleck, J.A., Downing, B.D., Boss, E., Pellerin, B.A., Ganju, N.K., Schoellhamer, D.H., Byington, A.A., Heim, W.A., Stephenson, M., Fujii, R., 2012. Mercury Dynamics in a San Francisco Estuary Tidal Wetland: Assessing Dynamics Using In Situ Measurements. Estuaries and Coasts, 35, pp. 1036-1048. doi: 10.1007/s12237-012-9501-3   Open Access Article
  12. ^ Bergamaschi, B.A., Krabbenhoft, D.P., Aiken, G.R., Patino, E., Rumbold, D.G., Orem, W.H., 2012. Tidally driven export of dissolved organic carbon, total mercury, and methylmercury from a mangrove-dominated estuary. Environmental Science and Technology, 46(3), pp. 1371-1378. doi: 10.1021/es2029137   Open Access Article
  13. ^ 13.0 13.1 de Jong, S., 1993. SIMPLS: an alternative approach to partial least squares regression. Chemometrics and Intelligent Laboratory Systems, 18(3), pp. 251-263. doi: 10.1016/0169-7439(93)85002-X
  14. ^ 14.0 14.1 Rosipal, R. and Krämer, N., 2006. Overview and Recent Advances in Partial Least Squares, In: Subspace, Latent Structure, and Feature Selection: Statistical and Optimization Perspectives Workshop, Revised Selected Papers (Lecture Notes in Computer Science, Volume 3940), Springer-Verlag, Berlin, Germany. pp. 34-51. doi: 10.1007/11752790_2
  15. ^ Boss, E. and Pegau, W.S., 2001. Relationship of light scattering at an angle in the backward direction to the backscattering coefficient. Applied Optics, 40(30), pp. 5503-5507. doi: 10.1364/AO.40.005503
  16. ^ Boss, E., Twardowski, M.S., Herring, S., 2001. Shape of the particulate beam spectrum and its inversion to obtain the shape of the particle size distribution. Applied Optics, 40(27), pp. 4884-4893. doi:10/1364/AO.40.004885
  17. ^ Babin, M., Morel, A., Fournier-Sicre, V., Fell, F., Stramski, D., 2003. Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration. Limnology and Oceanography, 48(2), pp. 843-859. doi: 10.4319/lo.2003.48.2.0843   Open Access Article
  18. ^ Coble, P., Hu, C., Gould, R., Chang, G., Wood, M., 2004. Colored dissolved organic matter in the coastal ocean: An optical tool for coastal zone environmental assessment and management. Oceanography, 17(2), pp. 50-59. doi: 10.5670/oceanog.2004.47   Open Access Article
  19. ^ Sullivan, J.M., Twardowski, M.S., Donaghay, P.L., Freeman, S.A., 2005. Use of optical scattering to discriminate particle types in coastal waters. Applied Optics, 44(9), pp. 1667–1680. doi: 10.1364/AO.44.001667
  20. ^ Twardowski, M.S., Boss, E., Macdonald, J.B., Pegau, W.S., Barnard, A.H., Zaneveld, J.R.V., 2001. A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters. Journal of Geophysical Research: Oceans, 106(C7), pp. 14,129-14,142. doi: 10/1029/2000JC000404   Open Access Article
  21. ^ Chang, G.C., Barnard, A.H., McLean, S., Egli, P.J., Moore, C., Zaneveld, J.R.V., Dickey, T.D., Hanson, A., 2006. In situ optical variability and relationships in the Santa Barbara Channel: implications for remote sensing. Applied Optics, 45(15), pp. 3593–3604. doi: 10.1364/AO.45.003593
  22. ^ Slade, W.H. and Boss, E., 2015. Spectral attenuation and backscattering as indicators of average particle size. Applied Optics, 54(24), pp. 7264-7277. doi: 10/1364/AO.54.007264   Open Access Article
  23. ^ Agrawal, Y.C. and Pottsmith, H.C., 2000. Instruments for particle size and settling velocity observations in sediment transport. Marine Geology, 168(1-4), pp. 89-114. doi: 10.1016/S0025-3227(00)00044-X
  24. ^ Boss, E., Pegau, W.S., Gardner, W.D., Zaneveld, J.R.V., Barnard, A.H., Twardowski, M.S., Chang, G.C., Dickey, T.D., 2001. Spectral particulate attenuation and particle size distribution in the bottom boundary layer of a continental shelf. Journal of Geophysical Research: Oceans, 106(C5), pp. 9509-9516. doi: 10.1029/2000JC900077   Open Access Article
  25. ^ Boss, E., Pegau, W.S., Lee, M., Twardowski, M., Shybanov, E., Korotaev, G. Baratange, F., 2004. Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution. Journal of Geophysical Research: Oceans, 109(C1), Article C01014. doi: 10.1029/2002JC001514   Open Access Article
  26. ^ Briggs, N.T., Slade, W.H., Boss, E., Perry, M.J., 2013. Method for estimating mean particle size from high-frequency fluctuations in beam attenuation or scattering measurement. Applied Optics, 52(27), pp. 6710-6725. doi: 10.1364/AO.52.006710   Open Access Article
  27. ^ Rasmussen, P.P., Gray, J.R., Glysson, G.D., Ziegler, A.C., 2009. Guidelines and procedures for computing time-series suspended-sediment concentrations and loads from in-stream turbidity-sensor and streamflow data. In: Techniques and Methods, Book 3: Applications of Hydraulics, Section C: Sediment and Erosion Techniques, Ch. 4. 52 pages. U.S. Geological Survey.   Open Access Article

See Also