
University of New Hampshire University of New Hampshire 

University of New Hampshire Scholars' Repository University of New Hampshire Scholars' Repository 

Master's Theses and Capstones Student Scholarship 

Fall 2009 

Sampling techniques for sediment pore water in evaluation of Sampling techniques for sediment pore water in evaluation of 

reactive capping efficacy reactive capping efficacy 

Donald E. Wise 
University of New Hampshire, Durham 

Follow this and additional works at: https://scholars.unh.edu/thesis 

Recommended Citation Recommended Citation 
Wise, Donald E., "Sampling techniques for sediment pore water in evaluation of reactive capping efficacy" 
(2009). Master's Theses and Capstones. 502. 
https://scholars.unh.edu/thesis/502 

This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire 
Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized 
administrator of University of New Hampshire Scholars' Repository. For more information, please contact 
Scholarly.Communication@unh.edu. 

https://scholars.unh.edu/
https://scholars.unh.edu/thesis
https://scholars.unh.edu/student
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F502&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis/502?utm_source=scholars.unh.edu%2Fthesis%2F502&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Scholarly.Communication@unh.edu


SAMPLING TECHNIQUES FOR SEDIMENT PORE WATER 

IN EVALUATION OF REACTIVE CAPPING EFFICACY 

By 

DONALD E. WISE 

B.S. University of Massachusetts - Lowell, 2001 

THESIS 

Submitted to the University of New Hampshire 

in Partial Fulfillment of 

the Requirements of the Degree of 

Master of Science 

In 

Civil Engineering 

September, 2009 



UMI Number: 1472089 

INFORMATION TO USERS 

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations 

and photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction. 

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion. 

UMI 
UMI Microform 1472089 

Copyright 2009 by ProQuest LLC 
All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code. 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



This thesis has been examined and approved. 

//Z^£s i ; ' w w 
Thesis Director, Dr. Kevin H. Gardner 

Associate Professor of Civil Engineering 

. C^QJ2-J<1^J^-— 

Dr. M. Robin Collins 

Professor of Civil Engineering 

Df JJiffltey $. Melton 

Research Assistant Professor of Civil Engineering 

FAS-/O9 
Date 



DEDICATION 

This thesis is dedicated to the women of my life. To my granddaughters, 

Makayla, Marissa and Skyla, who think Grampa is the greatest. To my 

daughters, Keri and Cindy, who think Dad is the smartest but stills needs their 

guidance. To my mother who feels her son may finally be meeting his potential. 

Most importantly it is dedicated to my wife, Sandy, who has shared all the ups 

and downs of my journey. It is tough being married to Peter Pan. 



ACKNOWLEDGEMENTS 

Ending retirement and going back to school has been a tremendous 

adventure. I met some great people who helped me reach my goals. I would like 

to thank Dr. Kevin Gardner for making this journey possible. His patience allowed 

me the time to enjoy the whole process. I wish to thank Dr. Jeff Melton for his 

support. His input in the peeper designs was very helpful. I would also like to 

thank my other committee member, Dr. M. Robin Collins. Doc Collins had to put 

up with me every semester in his classes and I will never look at water the same 

way again. 

Attending the University of New Hampshire, and being a member of the 

ERG community in particular, was very fulfilling. Every member of the 

Environmental Research Group from Maddy to Geri and Ron to Kelly did 

everything they could to help me succeed. My fellow students were terrific and 

we bonded in the team projects and study groups. I especially enjoyed the 

football and whiffleball games beside Gregg Hall. The professors at UNH, like 

Doc Collins, Dr. Malley and Dr. Kenner made challenging classes fun and spent 

an enormous amount of extra time with us. 

I would like to give special thanks to Deana Aulisio and Scott Greenwood. 

Their help in the lab and on field projects was invaluable. Scott was a terrific 

mentor. He patiently answered questions, sometimes over and over. 

Go Wildcats! 



TABLE OF CONTENTS 

DEDICATION iii 

ACKNOWLEDGEMENTS iv 

TABLE OF CONTENTS v 

LIST OF TABLES ix 

LIST OF FIGURES xi 

ABSTRACT xv 

INTRODUCTION 1 

1.1 Problem Statement 1 

1.2 Oxygen Affects on Sediment Sampling 3 

1.3 Thesis Objectives & Experimental Approach 4 

LITERATURE REVIEW 6 

2.1 Introduction 6 

2.1.1 Sediment Pore Water 6 

2.1.2 Contaminated Sediment 7 

2.2 Regulatory Considerations 9 

2.2.1 Introduction 9 

2.2.2 Regulations 10 

2.2.3 Agencies 11 

2.4 Pore Water Sampling 15 

2.4.1 Introduction 15 

2.4.2 Sampling Devices 16 

v 



2.5 Peeper Samplers 17 

2.5.1 Background 17 

2.5.2 Equilibration 19 

2.5.3 Device Material 20 

2.5.4 Membrane 21 

2.5.5 Preparation, Insertion and Removal 22 

2.5.6 Pros & Cons 24 

2.6 Direct Suction Samplers 25 

2.6.1 Background 25 

2.6.2 Device Specifics 26 

2.6.3 Pros & Cons 27 

METHODS & MATERIALS 28 

3.1 Methods 28 

3.1.1 Introduction 28 

3.1.2 Equilibration Studies 31 

3.1.3 Post Equilibration Studies 33 

3.1.4 Preparation 33 

3.1.5 Device Comparison 35 

3.1.6 Extraction Techniques 37 

3.1.7 Peeper Evaluation of Reactive Mats 39 

3.1.8 Analysis 41 

3.2 Materials 42 

3.2.1 Introduction 42 

vi 



3.2.2 Vertical Peeper 42 

3.2.3 Horizontal Peeper 46 

3.2.4 Membrane 50 

3.2.5 Peeper Keeper 51 

3.2.6 Push Point Samper 52 

RESULTS & DISCUSSION 53 

4.1 Peeper Evaluation 53 

4.1.1 Introduction 53 

4.1.2 Heavy Metal Analysis 53 

4.1.3 Equilibration 57 

4.1.4 Depth Profile 63 

4.2 Evaluation of Oxygen Effects 66 

4.2.1 Introduction 66 

4.2.2 Redox Sensitive Metal Equilibrated Analysis 66 

4.2.3 Redox Sensitive Metal Equilibration Trend Analysis 74 

4.2.4 Selected Metal Analysis 82 

4.2.5 Oxygen Effect on Anion Concentration 99 

4.2.6 Oxygen Effects On Peeper Material 117 

4.3 Evaluation of Sample Removal Techniques 123 

4.3.1 Introduction 123 

4.3.2 Filter Option Comparison 123 

4.3.3 Glove Box Extraction Comparison 126 

4.4 Push Point Sampling Device 133 

vii 



4.4.1 Introduction 133 

4.4.2 Push Point Laboratory Sample Analysis 134 

4.4.3 Push Point Field Sample Analysis 138 

4.4.4 Glove Box Extraction Analysis 139 

4.5 Device Comparison 144 

4.5.1 Introduction 144 

4.5.2 Evaluation 144 

CONCLUSIONS & RECOMMENDATION 151 

5.1 Introduction 151 

5.2 Peepers 151 

5.2.1 Peeper Preparation 151 

5.2.2 Peeper Material 153 

5.2.3 Sample Removal 154 

5.3 Push Point Sampler 154 

5.4 Device Comparison 155 

FUTURE RESEARCH 156 

6.1 Porewater Flow 156 

6.2 Intertidal vs. Deep River Water 157 

6.3 Equilibration 157 

LIST OF REFERENCES 158 

viii 



LIST OF TABLES 

Table 2.1: NOAA Sediment Inorganic Compound Concentration Guidelines 12 

Table 2.2: Washington Department of Ecology Sediment Quality Standards 13 

Table 3.1: Sediment Location and Characteristics 28 

Table 3.2: Vertical Peeper Purchasing Information 43 

Table 3.3: Horizontal Peeper Purchasing Information 46 

Table 3.4: Membrane specifications 50 

Table 4.1: 95% Confidence Independent t-tests for Redox Metals 73 

Table 4.2: Paired t-tests for Redox Metals Equilibrated Results 78 

Table 4.3: Cocheco River Paired t-tests for Redox Metals 81 

Table 4.4: Independent t-tests for Selected Metals 85 

Table 4.5: Anion Independent t-tests 102 

Table 4.6: Filter Option Independent t-tests 125 

Table 4.7: Merrimack River Glove Box Comparison Independent t-tests 131 

Table 4.8: Squamscott River Glove Box Comparison Independent t-tests 132 

Table 4.9: Merrimack River Push Point Independent t-test Filtered vs. Unfiltered 

136 

Table 4.10: Merrimack River Push Point Independent t-test Initial Sample vs. 

Standard Procedure 137 

Table 4.11: Merrimack River Push Point Independent t-test Initial Comparison of 

Glove Box Extraction 143 

ix 



Table 4.12: Paired t-test for Device Comparisons of Peeper and Push Point 

Samples 149 

x 



LIST OF FIGURES 

Figure 2.1: Modified Vertical Peeper 18 

Figure 3.1: Cocheco Field Equilibration Matrix 31 

Figure 3.2: Laboratory Equilibration Layout 32 

Figure 3.3: Makeup Water Preparation 34 

Figure 3.4: Laboratory Sediment Setup 35 

Figure 3.5: Push Point Extraction Setup 36 

Figure 3.6: Sample Removal with Syringe 37 

Figure 3.7: Syringe & Filter 38 

Figure 3.8: Cocheco River Reactive Mat with Peeper 39 

Figure 3.9: Horizontal Peeper With Bar & Attachments 40 

Figure 3.10: Vertical Peeper Body Drawing (1 of 2) 44 

Figure 3.11: Vertical Peeper Cover Drawing (2 of 2) 45 

Figure 3.12: Horizontal Peeper Body Drawing with Bar & SPME Attachment sites 

(1 of 3) 47 

Figure 3.13: Horizontal Peeper Hole Location Drawing for Body with Bar & SPME 

Attachment Sites (2 of 3) 48 

Figure 3.14: Horizontal Peeper Cover Drawing (3 of 3) 49 

Figure 3.15: Membrane Roll & Sizing Equipment 50 

Figure 3.16: Peeper Keeper Components 51 

xi 



Figure 3.17: Push Point Field Setup 52 

Figure 4.1: Cocheco River Sediment Metal Concentrations 54 

Figure 4.2: Merrimack River Sediment Metal Concentrations 55 

Figure 4.3: Squamscott River Sediment Metal Concentrations 55 

Figure 4.4: Iron Equilibration Trends 59 

Figure 4.5: Cadmium Equilibration Trends 60 

Figure 4.6 Chromium Equilibration Trends 61 

Figure 4.7: Cocheco River Peeper 64 

Figure 4.8: Merrimack River Air Purged, Unfiltered Iron Depth Profile 65 

Figure 4.9: Overall Iron and Manganese Concentrations 67 

Figure 4.10: Merrimack River Filtered Iron Concentration Depth Profiles 68 

Figure 4.11: Squamscott River Filtered Iron Concentration Depth Profile 69 

Figure 4.12: Cocheco River Filtered Iron Concentration Depth Profile 71 

Figure 4.13: Merrimack & Squamscott Rivers Iron Equilibration Trend 74 

Figure 4.14: Merrimack River Iron Equilibration Trend Depth Profile 76 

Figure 4.15: Merrimack & Squamscott Rivers Mn Equilibration Trend 77 

Figure 4.16: Cocheco River Iron Equilibration Trends 79 

Figure 4.17: Cocheco River Manganese Equilibration Trends 80 

Figure 4.18: Selected Equilibrated Metal Concentrations 83 

Figure 4.19: Merrimack & Squamscott Rivers Depth Profile for Cd 88 

Figure 4.20: Merrimack and Squamscott Rivers Depth Profile for Cr 89 

Figure 4.21: Merrimack and Squamscott Rivers Depth Profile for Sr 91 

Figure 4.22: Merrimack and Squamscott Rivers Depth Profile forZn 92 

xii 



Figure 4.23: Cocheco River Depth Profile for Cd & Cr 93 

Figure 4.24: Cocheco River Depth Profile for Sr & Zn 94 

Figure 4.25: Selected Metal Trends 96 

Figure 4.26: Zn Trends in Selected Sediments 98 

Figure 4.27: Equilibrated Anion Concentrations 100 

Figure 4.28: Merrimack River Chloride Anion Depth Profile 104 

Figure 4.29: Squamscott River Chloride Anion Depth Profile 105 

Figure 4.30: Merrimack River Sulfate Anion Depth Profile Figure 107 

Figure 4.31: Squamscott River Sulfate Anion Depth Profile 108 

Figure 4.32: Merrimack River Nitrate + Nitrite Depth 109 

Figure 4.33: Merrimack River Nitrite Depth Profile 110 

Figure 4.34: Squamscott River Nitrate + Nitrite Depth Profile 112 

Figure 4.35: Squamscott River Nitrite Depth Profile 113 

Figure 4.36: Sediment Pore Water Nitrite + Nitrate Equilibration Trend 114 

Figure 4.37: Sediment Pore Water Nitrite Equilibration Trend 115 

Figure 4.38: Sediment Nitrite/Nitrite + Nitrate Ratio 116 

Figure 4.39: Equilibrated Peeper Backs Prior to Sample Removal 118 

Figure 4.40: Merrimack & Squamscott Rivers Peeper Faces 119 

Figure 4.41: Cocheco River Weekly Trend Peeper Faces 121 

Figure 4.42: Merrimack River Weekly Trend Peeper Faces 122 

Figure 4.43: Merrimack River Glove Box Results for Redox Sensitive Metals. 127 

Figure 4.44: Squamscott River Glove Box Results for Redox Sensitive Metals 128 

Figure 4.45: Merrimack River Glove Box Results for Selected Metals 129 

xiii 



Figure 4.46: Squamscott River Glove Box Results for Selected 130 

Figure 4.47: Merrimack River Laboratory Push Point Metal Analysis 135 

Figure 4.48: Merrimack River Field Push Point Metal Analysis 138 

Figure 4.49: Push Point Glove Box Comparison of Cadmium and Chromium . 140 

Figure 4.50: Glove Box Comparison of Iron and Magnesium 141 

Figure 4.51: Glove Box Comparison of Strontium and Zinc 142 

Figure 4.52: Device Comparison of Cadmium and Chromium 145 

Figure 4.53: Device Comparison of Iron and Manganese 146 

Figure 4.54: Device Comparison of Strontium and Zinc 147 

XIV 



ABSTRACT 

SAMPLING TECHNIQUES FOR SEDIMENT PORE WATER 

USEFULNESS IN EVALUATION OF REACTIVE CAPPING EFFICACY 

By 

Donald E. Wise 

University of New Hampshire, September, 2009 

Contaminated sediments are a significant problem that has adverse 

effects on human, animal and plant health. Heavy metal contamination, with 

dissolved metals being the most bioavailable form, has been occurring since man 

first started living in communities around water bodies. Pore water provides 

contaminated metals a medium for transport from the sediment to the water 

body. Determining the toxic metal concentration in pore water is essential to any 

remediation plan. In-situ dialysis samplers or peepers were investigated in this 

thesis as a tool for evaluating metal contamination in sediments. Peeper 

performance was compared to direct suction samplers. Both samplers were 

evaluated for effectiveness in determining geotextile reactive cap efficacy. 

The industry standard, as defined by Richard Carignan from the University 

of Quebec at Montreal, is to eliminate oxygen in peeper material, preparation and 

sample removal. Studies preformed by Carignan indicated oxygen caused redox 
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sensitive metals to precipitate, resulting in lower concentrations. Oxygen in 

peeper material resulted in an orange tint on the peeper and membrane. It 

should be noted that the majority of his studies were performed at the bottom of 

freshwater lakes. Deoxygenating peepers is a time consuming and complicated 

operation. The theory evaluated in this thesis is that oxygen effects are mitigated 

during peeper equilibration. Equilibration time allows oxygen to be dissipated into 

the surrounding sediment or consumed by microbial activity. 

The effects of oxygen introduced during preparation were evaluated by 

comparing peepers assembled with makeup water purged with air and nitrogen. 

These effects were examined in field studies in the intertidal zone and in tub in 

laboratory studies. Sample removal compared filtering with unfiltered samples to 

evaluate whether colloidal phases could form in the chambers and affect 

measured concentrations. Samples removed with the use of a nitrogen purged 

glove box were compared with the standard removal procedure. Analysis of 

redox sensitive metals, anions and the selected heavy metals indicated oxygen 

was not a problem in the preparation or sample removal. Results indicated 

orange tint was dependent on sediment type and not peeper material. 

The push point sampling device yields a sample with a minimum of effort 

and training but it is only effective in loose, sandy sediment. The prevailing 

evidence is that push point yields a higher concentration than those obtained with 

peepers. The difference is not so great that it does not preclude using the 

devices together as part of the overall sampling plan. 



CHAPTER 1 

INTRODUCTION 

1.1 Problem Statement 

Contaminated sediments are a significant problem that has adverse 

affects on human, animal and plant health. They have been identified as one of 

the main reasons for over 3,200 fish consumption advisories sited by the USEPA 

(2008). Heavy metal contamination of sediment has been occurring since man 

first started living in communities around water bodies (Stanley et al., 2007). 

Methods for remediating contaminated sediment include natural recovery, 

dredging and capping. Dredging is used extensively to maintain navigable water 

ways and for removing contamination hot spots. Dredging is the most expensive 

option. There are also problems associated with how to treat and where to put 

the dredged material. Another difficulty with dredging is that a considerable 

amount of contaminated sediments are re-deposited down stream. Unless there 

are significant environmental health issues, natural recovery can be done 

(Bokuniewicz et al., 1997). Capping is becoming more of a choice to contain 

contaminated hot spots. New capping technologies, such as the geotextile 

reactive cap, are being investigated. Both natural recovery and capping require 

long-term monitoring. 
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One of the problems with capping with sand is the cap is usually thick. 

This thick cap can affect the water body depth and, thus, navigation. Geotextile 

reactive caps are very thin in comparison. The reactive cap contains layers with 

material such as phosphate to sequester metals and granular activated carbon 

that adsorbs organics. The geotextile cap presents a monitoring challenge. The 

geotextile material is tough and difficult to penetrate. Any device that punctures 

the cap will also provide a route for the pore water to channel through it, which 

reduces the caps efficiency. 

Dissolved heavy metals are the most bioavailable form of metal 

contamination and, therefore, have the most adverse biological effect (Bufflap 

and Allen, 1995). Pore water provides heavy metals and other contaminants a 

medium for transport from the sediment to the water body. Determining the toxic 

metal concentration in pore water is essential to any remediation plan. Pore 

water can be analyzed ex-situ by grabbing a section of sediment then removing 

the pore water from it. A pore water sample may also be obtained in-situ by a 

device that only collects the pore water. Collecting only the pore water reduces 

artifacts from the sampling process. 

Examining in-situ pore water sampling methods is the primary purpose of 

this thesis. Determining a device and method that can be used to evaluate the 

effectiveness of geotextile reactive caps is also a major goal. 



1.2 Oxygen Affects on Sediment Sampling 

Below the sediment water interface, pore water is usually anoxic. Any 

oxygen introduced into a pore water sample becomes a primary source of 

analysis error (Bufflap and Allen, 1995). The effects of oxidation are particularly 

seen in redox sensitive metals, like iron and manganese. Oxidation can lead to 

both increased and decreased levels of dissolved metals subject to sediment 

characteristics. 

Anoxic pore water generally has a high concentration of sulfide. The iow 

soluble metal sulfide complexes are not considered bioavailable or toxic. 

Introducing oxygen into the sediment with a high sulfide level will cause the metal 

speciation to change, thus becoming more soluble. Chapman et al. (2002) stated 

this will lead to a sample that appears to have more bioavailable metals. Their 

study noted that the release of iron and manganese was faster than that of other 

heavy metal sulfides such as cadmium and lead. In highly sulfidic sediment, 

oxidation can lead to samples that show higher metal concentrations. 

Richard Carignan, from the University of Quebec at Montreal, performed 

studies on in-situ dialysis sampling device preparation, material and sample 

removal. The field portions of Carignan's studies were performed mostly at the 

bottom of lakes in Canada and northeastern United States. Peepers were 

inserted and retrieved by divers or power insertion devices. These studies 

showed the introduction of oxygen caused redox sensitive metals to precipitate. 

The resulting samples had lower concentrations of metals then were actually in 
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the sediment. His study on device material found that oxygen leaching out of 

plastic caused the redox sensitive metal, iron, to precipitate within the device. He 

found that atmospheric oxygen introduce during sample removal has the same 

affect. In Carignan's preparation experiment, he determined that oxygen in the 

makeup water showed lowered metal concentrations. He stated that the oxygen 

migrating from the device cause metals in its vicinity to precipitate. Carignan's 

work has been cited in many papers and books as the preferred method for 

deploying in-situ dialysis sampling devices regardless of the type of sediment 

being tested. 

The Carignan and Chapman studies showed that oxygenation during the 

sampling process can result in differing levels of metal concentration. Both 

studies cited the effects were greater on redox sensitive metals. Whether oxygen 

introduction caused more or less metals in the sediment, it must be taken into 

consideration during the sampling process. 

1.3 Thesis Objectives & Experimental Approach 

Preliminary research determined that the in-situ dialysis sampler, or 

peeper, was an effective method for in-situ sampling. Peepers have been used 

since the 70s for sediment sampling. The main objective of this thesis is to 

evaluate the performance of the peepers in the top one foot of sediment. 

Studying the affects of oxygen will be a significant portion of the evaluation. 

Deoxygenating peepers is a time consuming and complicated operation. It is 
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made more difficult when preparing peepers for sites that are a long distance 

from the laboratory. If oxygen affects are proven not to be a problem, then 

peeper preparation can be reduced by 48 hours. Not worrying about oxygen will 

also make transportation, insertion and sample removal much less complicated. 

The theory put forth by this thesis is that oxygen effects will be mitigated 

the longer the peepers are left in the sediment. The extended time will allow 

oxygen to be dissipated into the surrounding sediment. Microbial activity will 

reduce oxygen effects by consuming any available oxygen as a terminal electron 

acceptor. The elimination of oxygen in the sediment adjacent to or in the peepers 

will also alleviate any indirect effects, such as adsorption to iron oxide precipitate 

surfaces, to heavy metal concentration analysis. 

Experiments in this thesis will evaluate the oxygen affects by looking at 

equilibration and post equilibration peeper samples in a variety of sediments. The 

redox sensitive metals, Fe and Mn, plus selected heavy metals will be examined 

to determine oxygenation effects. The peeper's performance will be compared to 

the push point direct suction sampler. Sample removal techniques for both 

devices will also be evaluated. The information obtained will allow a method to be 

developed to evaluate the performance of geotextile reactive caps. 

5 



CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

2.1.1 Sediment Pore Water 

Sediments are an important aspect of aquatic ecosystems. They provide 

an essential habitat for aquatic species' growth and reproduction (EPA, 2006). 

One of the earliest people to write about the properties of sediment was a Greek 

geographer named Strabo (64BC - 24AD). He described, "The soil is not only 

friable and crumbly but it is also full of salts and easy to burn out" (Mudroch et.al., 

1995). 

Sediments are composed of organic and inorganic particulate that have 

deposited on the bottom of water bodies (EPA, 2008). The organic particles 

consist of algal material, vegetation debris, organism secretions and remains 

(EPA, 2003). Gravel, sand, silt and chemical precipitates are the inorganic 

components of sediment. The material collects through deposition from current 

and tidal effects, storm water runoff, erosion, atmospheric deposition, chemical 

precipitation and organism excretions. 

Interstitial or pore water is the fluid between the solid particles of the 

sediment. Pore water is comprised of dissolved sediment constituents, material 

from the water body above and the ground water that has flowed into it. Sandy 
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sediments generally contain around 30% pore water. Although, different mixtures 

of sand and silt can contain as much as 99% pore water (Mudroc and Azcue, 

1995). Movement of pore water through sediments is regulated by porosity and 

permeability (Chapman et al., 2002). Additional properties that affect the direction 

and velocity of interstitial water movement include sediment pore size, hydraulic 

pressure, ground water and tidal influences. 

2.1.2 Contaminated Sediment 

The EPA defines contaminated sediment as "soil, sand, organic matter, or 

minerals that accumulate on the bottom of water bodies and contain toxic or 

hazardous materials at concentrations that may adversely affect human health or 

the environment" (EPA, 2008). Contamination occurs when pollutants are added 

through natural means like storm water runoff, erosion, or wind deposition. They 

can also be added by anthropogenic means, which can accelerate the rate of 

accumulation, from sources like waste treatment plants. A "natural" contaminant 

is one that occurs without human introduction, whereas "anthropogenic" 

contaminants are produced through human activity. It should be noted that 

natural contaminants can also have anthropogenic origins (Adolphson, 1995). 

Anthropogenic sediment contamination started when man first began 

living in communities. These early civilizations always grew up around water 

bodies. The water bodies provided needed resources to sustain life but were also 

used as waste deposits. Sediment cores taken from the Nile's delta indicated that 

a coastal population flourished in this area during Egypt's Intermediate (ca. B.C. 

1000) and Late Dynastic (pre-Ptolemaic) periods. The cores from this period, that 
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pre-dates Alexander the Great, showed elevated lead concentrations (Stanley et 

al., 2007). The advent of the industrial revolution is responsible for a significant 

increase in sediment contamination. For example, steel plants have flourished for 

more than a century and are responsible for elevated levels of organic 

compounds and heavy metals (Romano et al., 2004). The early electronic and 

metal plating industries also contributed metal and organic pollutants to 

sediments by discharging their toxic wastes and by-products. Contaminated 

sediments have been identified as the major reservoir for trace metals in coastal 

ecosystems. Redox conditions of sediment can be evaluated by the distribution 

of redox sensitive metals (Huerta-Diaz et al., 2007). 

Through microbial activity, redox reactions, sorption processes and 

compound solubility, sediments are a "biogeochemical reactor. Pore water is the 

solvent for many of these activities. Therefore, understanding pore water 

chemistry will lead to a better understanding of contamination in sediments 

(Allen, 1995). More specifically, Carignan et al. (1985) noted the key to aquatic 

systems is a firm knowledge of trace metal dynamics near the surface of 

sediments. He also noted that trace metal concentrations in sediment pore water 

are usually no more than 10~7 mol/L. Metals are a conservative contaminant, they 

do not biodegrade, and their redox characteristics have been identified as one 

the major factors influencing their speciation and mobility. 

Pore water is the main component of sediment capable of movement. The 

dissolved constituents in pore water can be actively transported to and from the 

sediment and water body above it. Pore water and solid sediment constituents 
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can be stirred up by a storm or boat's propeller. They are then re-suspended in 

another area (EPA, 2008). Movement of the dissolved constituents through pore 

water can be caused not only by sediment movement or hydraulic gradients but 

by also by benthic, or bottom living, organisms. Worms and larva can cause 

these constituents to travel by bioturbation or bioirrigation (Chapman et al., 

2002). Some organisms construct a "U-tube" in the sediment with their 

burrowing. These U-tubes will cause the overlying water to penetrate the 

sediment. Thus, allowing an exchange of dissolved constituents between the 

sediment and water column. 

2.2 Regulatory Considerations 

2.2.1 Introduction 

Most laws governing contaminated sediments were not written specifically 

for them. Although, there are federal, state or local laws that pertain to the 

handling, treatment, disposal, and containment of contaminated sediment. There 

are also numerous organizations with responsibility for particular aspects of 

marine sediment. These include the U.S. Environmental Protection Agency 

(USEPA), National Oceanic and Atmospheric Administration (NOAA), US Army 

Corp of Engineers (USACE), US Geological Survey, Coast Guard and individual 

local and states agencies. The number of organizations dealing with 

contaminated sediments results in an inconsistent regulatory approach with no 

single authority geared specifically to the management of contaminated 

sediments (Bokuniewicz et al., 1997). Liu et al., noted in 1999 that a majority of 
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sediment quality criteria was determined for a specific location. This inconsistent 

approach to remediation decision making can cause the implementation phase to 

take 3-15 yrs to start. 

2.2.2 Regulations 

One of the main driving forces for sediment management is maintaining 

navigable waterways. The Rivers and Harbors Acts (RHA) of 1890 and 1899 

were the first regulations dealing with the area in and around a navigation 

channel. The legislation required the Department of the Army to remove 

obstructions or make alterations for any navigable water of the United States. 

Work such as dredging and disposal of dredged material, excavation, filling or 

other modifications are included in the regulations (FEMA, 2006). 

The Clean Water Act (CWA) directs the EPA "to identify the location of in-

place pollutants with emphasis on toxic pollutants in harbors and navigable 

waterways." It also authorizes the EPA, in conjunction with USACE, "to make 

contracts for the removal and appropriate disposal of such materials from critical 

port and harbor areas" (EPA, 2008). Although the CWA does not specifically 

regulate sediments, it controls point source discharges, toxics spills and 

regulates discharge of dredged material. 

Comprehensive Environmental Response, Compensation, and Liability 

Act (CERCLA), or Superfund, was created to protect communities from 

contaminated abandoned toxic waste sites. The EPA is responsible for 

conducting removal actions, identifying responsible parties, generating 

community involvement, and involving individual states to guarantee long-term 
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corrective action of hazardous substances. The National Priority List (NPL) is 

used to prioritize the hazardous waste sites (EPA, 2008). As of 2001, there were 

350 contaminated sediment sites identified. The sites in current remediation are 

using technologies such as dredging, in-situ capping and monitored natural 

recovery (EPA, 2003). 

Marine Protection, Research, and Sanctuaries (MPRSA) act deals with 

unregulated dumping of material into ocean waters. The law was designed to 

protect human health, marine ecological systems, and economic potentialities 

(U.S. Senate, 1972). Under authority of MPRSA Section 102, the EPA and 

USACE are charged with developing discharge criteria for the dumping of 

dredged material in ocean waters. An ocean dumping manual or "Green Book" is 

used to determine the contaminant status of dredged material (EPA, 2008). 

The Water Resources Development Act of 2007 was written to "provide for 

the conservation and development of water and related resources, to authorize 

the Secretary of the Army to construct various projects for improvements to rivers 

and harbors of the United States, and for other purposes" (H.R.1495). Some of 

the provisions of this law deal with projects for navigation, ecosystem restoration, 

and hurricane, flood, or storm damage reduction. It also authorizes projects 

associated with aquatic nuisance plants. 

2.2.3 Agencies 

Among the agencies concerned with contaminated sediment, the EPA is 

most concerned with public health. One of their main objectives is to reduce the 

risks posed by contaminated sediments. They published the "Framework for 
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Developing Suspended and Bedded Sediments (SABS) Water Quality Criteria" in 

May 2006. The primary purpose of this document is to provide guidelines for 

affected state and local authorities in "adopting consistent scientifically defensible 

SABS criteria". The document is a result of the CWA (EPA, 2008). The EPA also 

works with other federal agencies to implement the regulations. 

NOAA has developed guidelines for screening concentrations of 

contaminants in a multitude of environmental media. The guidelines provide an 

informal, non-regulatory standard for analyzing chemical data and sediments. 

They can be found in NOAA "Screening Quick Reference Tables" or SQuiRTs. 

Table 2.1: NOAA Sediment Inorganic Compound Concentration Guidelines 

Chemical 
Arsenic 
Cadmium 
Chromium 
Copper 
Lead 
Mercury 
Nickel 
Silver 
Zinc 

Guidelines 
(ppm, dry wl 

TEL 
7.24 
0.68 
52.3 
18.7 
30.2 
0.13 
15.9 
0.73 
124 

ERL 
8.2 
1.2 
81 
34 

46.7 
0.15 
20.3 
1.0 
150 

t) 
ERM 
70 
9.6 
370 
270 
218 
0.71 
51.6 
3.7 
410 

Table 2.1 shows NOAA's guidelines for inorganic compounds. Threshold 

effective level (TEL), effects range low (ERL) and effects range medium (ERM) 

values were calculated for trace metals, individual PAHs and PAH classes and 

several classes of chlorinated organic hydrocarbons. TEL defines the 

concentration level at which biological effects can be expected. ERL is intended 
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to represent concentrations below which effects are rarely observed. ERM values 

define concentration where adverse effects increase from 60% to 90% for trace 

metals and 80% to 100% for most organics (NOAA, 2006). 

The mission statement of the USACE reads in part: "Planning, designing, 

building and operating water resources and other civil works projects (Navigation, 

Flood Control, Environmental Protection, Disaster Response, etc.)". Restoration 

and stewardship are the two major focus areas of the U.S. Army Corps of 

Engineers environmental mission. Every year the USACE oversees the dredging 

of approximately 300 million cubic yards of sediment. The dredging is done to 

deepen harbors and clear shipping lanes. Approximately 3 to12 million cubic 

yards of these sediments are so contaminated they require special handling 

(USACE, 2008). 

Table 2.2: Washington Department of Ecology Sediment Quality Standards 

CHEMICAL 

ARSENIC 
CADMIUM 
CHROMIUM 
COPPER 
LEAD 
MERCURY 
SILVER 
ZINC 

Sediment Quality Standards 

MG/KG DRY WEIGHT 
(PPM, DRY) 

57 
5.1 
260 
390 
450 
0.41 
6.1 
410 

Sediment Impact Zone 
Maximum Level 
MG/KG DRY WEIGHT 

(PPM, DRY) 
93 
6.7 
270 
390 
530 
0.59 
6.1 
960 

In conjunction with federal authorities, individual states have adopted 

guidelines for contaminated sediment. For example, Florida's guidelines are 
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based on NOAA's standards and Washington State's department of Ecology has 

implemented "The Sediment Management Standards". Washington State's 

document contains two sets of numeric chemical criteria (WAC-173-204-320). 

These criteria, seen in Table 2.2, differ slightly from those of NOAA. They are 

based on amount of contaminant in a kilogram of sediment on dry mass basis. 

2.3 Toxicity 

Sediments act like a sponge removing contamination from the surface 

water. This reduces the direct toxicity to aquatic organisms in the water column 

(Bufflap and Allen, 1995). As the toxic material leaches back into the water 

column, it makes sediments an ongoing source of toxic substances even as the 

water meets quality standards (EPA, 1992). Anthropogenic actions that increase 

the naturally occurring concentrations of elements can make the contaminated 

sediment toxic and detrimental to the marine organisms (Adolphson, 1995). 

Creatures in the benthic environment are most affected by contaminated 

sediment. These organisms include insect larvae, worms and crustaceans. Toxic 

substances can kill these organisms reducing their availability as a food source 

and the biodiversity of the benthic environment. Organisms that survive the 

toxins can cause adverse effects to the predators higher up on the food chain. 

The contaminant concentration can increase in these animal's systems through 

the process of "biomagnification". The toxins in the sediment then can cause 

harm, with chronic heath problems, or death to marine mammals, waterfowl and 

fish (EPA. 2008). 
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Heavy metals can be a toxin to marine organisms. Copper, for example, is 

used as an herbicide in vessel bottom paint. Pore water is a key exposure route 

for heavy metals in sediment. The dissolved metals, the most "bioavailable" 

fraction of metals in sediment, can produce a significant amount of biological 

damage to benthic organisms. Although humic acid, sulfide and polysulfide 

complexes can be soluble, they are not considered bioavailable compounds. As 

a result, these complexes can cause an overestimation of their toxicity in pore 

water (Bufflap and Allen, 1995) (Chapman et al., 2002). 

Toxicity of contaminated sediment is a significant problem for marine 

organisms. Since pore water is a primary exposure route, it is important to 

develop a credible method of sampling and analyzing contamination in sediment. 

2.4 Pore Water Sampling 

2.4.1 Introduction 

The first sediment sampling was actually done as prospecting. As early as 

1500 B.C., ancient civilizations used wooden shovels to look for gold, iron or 

copper in streams or at the edges of larger water bodies. Today's environmental 

studies require a wide variety of sophisticated sampling equipment. Each of 

these sophisticated devices and techniques comes with both benefits and 

drawbacks. 

Although pore water sampling dates back to 1930 (Chapman et al., 2002), 

it is considered a relatively new technology. In 1976, Hesslein was one of the first 

to develop an in-situ pore water sampler. Pore water sampling is being used to 
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evaluate the impact and transport of dissolved sediment components, equilibrium 

reactions, and chemical changes (Mudroch & Azcue, 1995). Howes et al. (1984) 

pointed out that there is a better understanding of analyzing methods for pore 

water than extraction techniques. Pore water extracted deeper than a few 

centimeters is usually anoxic, although, "surifcial" sediment shows signs of being 

aerobic (Liu et al., 1999). Bufflap and Allen (1995) found that the primary source 

of error in pore water sampling was oxidation of anoxic pore water. Therefore, 

care must be taken during extraction or the sampling method can change the 

chemical speciation and, therefore, its bioavailability (Chapman et al., 2002). 

2.4.2 Sampling Devices 

With any sampling technique, the purpose is to obtain an undisturbed 

sample of sediment or its pore water (Mudroch & Azcue, 1995). Carignan et al. 

(1985) indicated that trace metal concentrations in pore water rarely surpass 10"7 

mol/L. Pore water sampling methods can be divided into two basic categories. 

Grabbers and cores are examples of devices that remove both sediment solids 

and pore water. Membrane dialysis and direct suction samplers are examples of 

devices that are intended to just remove pore water. 

One of the advantages of ponar grab sampler and cores is they are 

effective in obtaining samples of benthic organisms along with the other sediment 

components. Like it sounds, the grabber uses a shovel like device to obtain a 

sample. Since pore water drains out of the apparatus upon removal from the 

sediment, it is ineffective in obtaining a pore water sample. The corer is a 
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cylinder of varying length and diameter. The device is pushed into the sediment. 

Upon removal, a flapper valve causes a vacuum, allowing sediment to be 

collected. A high speed centrifugation, which may change some of the pore water 

characteristics, must be used to extract pore water from the sample. 

Membrane dialysis and direct suction samplers will be discussed at length 

later in this chapter. Another device in this category is the "diffusive gradients in 

thin film" (DGT) sampler. It is a relatively new device that was invented by 

Davison and Zhang in 1994. Metals transfer through a diffusive gel at a rate 

controlled by the gel composition and thickness. The metals are absorbed onto 

the resin beads on the other side of the gel, providing an infinite sink (maintaining 

a zero concentration condition on that side of the gel). The device requires an 

average equilibration time of one day and yields a sample of the sediment's 

metal constituent concentration. 

2.5 Peeper Samplers 

2.5.1 Background 

Membrane dialysis samplers or "peepers" were developed by Hesslein for 

sampling in the Florida Everglades. The Hesslein peeper and its modifications 

are extensively used for in-situ pore water sampling (Mudroc and Azcue, 1995). 

The sampler is inserted into sediment, allowed to reach equilibration with the 

pore water then removed. The device collects a sample that is an average of the 

pore water constituent concentration over the equilibration time. The peeper 
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sample is an exact representation of sediment pore water. The device is used to 

determine concentrations of dissolved metals and organics as well as other 

pertinent chemical properties such as pH, conductivity or alkalinity. 

Float Attachment 

Body 

Chambers 

Cover with attachment 
screws 

Membrane (white 
material) 

Figure 2.1: Modified Vertical Peeper 

The peeper, also called a dialyzer, is made up of three parts. The body 

contains the chambers for sample collection. A porous membrane covers the 

chambers and is held in place by a cover. The discrete chambers are filled with 

distilled, deoxygenated water. The individual peeper parts are depicted in figure 

2.1: Modified Vertical Peeper. A critical auxiliary component is the "peeper 

keeper". The peeper keeper is used to prepare the deoxygenated water, store 

and transport the peeper to the sampling site. The keeper's main purpose is to 

keep the peeper in a moist, clean, anaerobic environment prior to insertion. 

The flexibility of the peeper makes it a useful sampling device for almost 

any sediment conditions. The chamber size, sediment contact area and 
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membrane can be modified to maximize collection of the pore water constituent 

in question. For example the chamber volume can be increased for analysis of 

the same sample for heavy metals in an ICP mass spectrometer and anions in a 

colorimeter. Most designs feature a rectangular configuration, cylindrically 

arrangements are also common. Peeper designs vary from project to project 

based on the researchers needs. 

2.5.2 Equilibration 

Pore water constituents diffuse across the peeper membrane following 

Fick's laws of diffusion. The driving force of the flux, according to Fick's first law, 

is from areas of high concentration to low concentration. Following Brownian 

motion concepts, the constituents cross back and forth across the membrane 

until the pore water and fluid in the peeper are the same concentration. The 

equilibration time is reached based on Fick's second law. Pressure differential 

across the peeper membrane will also affect the rate the pore water constituents 

cross the membrane. Carignan confirmed, in his 1984 paper, that the most 

important factors affecting equilibration time are the diffusion coefficient, 

temperature and porosity of the sediment. He stated that, in general, the 

equilibration time for cold conditions is 20 days while for warm temperatures it is 

15 days. Carignan stated in a 1985 paper that equilibration time will be different 

for different metals. The current industry standard is 3 to 4 weeks. This was 

confirmed by interviews with Michelle Lorah of USGS, Ryan Barth of Anchor 

Environmental and Jerry Morrison from the Rickley Hydrological Company. 
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Another factor affecting equilibration is the chamber design. The 

significant design features are chamber volume and contact area. The type and 

pore size of the membrane, a filtering device, is also a factor in determining 

equilibration time (Carignan et al., 1994). Reduction of the peeper width or 

increase in the sediment contact area will reduce the equilibration time. 

2.5.3 Device Material 

The peeper body and cover are made from a variety of plastic materials. 

The choice of materials is based on the sediment conditions and pore water 

constituents under consideration. The plastic materials most often used are 

acrylic plastic (PMMA), high density polyethylene (HDPE) or polycarbonate (PC). 

For example, the Rickley Hydrological Company uses acrylic plastic in the 

manufacture of their peepers, while the US Army used polycarbonate peepers at 

Aberdeen Proving Ground, MD in 1995. 

Dr. Richard Carignan has written numerous papers on dialysis sampling 

methods and heavy metals testing in pore water. Three of those papers dealt in 

part with peeper materials. He has determined that oxygen diffusion from plastics 

will affect redox sensitive metals like iron, manganese and dissolved reactive 

phosphate (DRP). His studies showed that polycarbonate was a particular 

problem as an orange-yellow color was seen on the membrane and chambers of 

peepers. In his experiments, polycarbonate peepers always resulted in lower 

concentrations of the redox sensitive metals. A related problem with the 

precipitation of ferric oxide is that the precipitate has a tendency to adsorb other 
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trace metals (Bufflap and Allen, 1995). This results in a lower concentration 

reading of heavy metals than is actually in the sediment. 

Carignan et al. (1994) determined the percent volume of oxygen of several 

types of plastics. They also determined the half life time for oxygen to diffuse out 

of the plastics. Their results showed that HDPE had an 0 2 %Vol/Vol of 0.6 with a 

half life 3.7 days. Acrylic and polycarbonate were 1.8, 3.7 O2 %VolA/ol and 5.7, 

1.6 days, respectively. From this data, they determined polycarbonate was not a 

fit material for heavy metal studies. In a similar study by Huerta-Diaz et al. ( 

2007) polycarbonate was blamed for artifacts resulting in lower ion 

concentrations. 

The material used for screws to fasten the peeper components is another 

item that could lead to artifacts in trace metal sampling. Bufflap and Allen felt that 

nylon screws should be used to eliminate any contamination. However in a 1985 

study, Carignan et al. did not observe any effects from stainless steel screws. 

2.5.4 Membrane 

The membrane type and pore size is the most important component of 

dialysis samplers. Early researchers, like Hesslein and Brandl, used a cellulose 

membrane. However, since cellulose membranes are subjected to microbial 

attack, it is generally recommended that a biologically inert material be used 

(Mudroc and Azcue, 1995). Most researchers are currently using 

polytetrafluoroethylene (PTFE), polycarbonate, nylon or polysulfone (PS) for 

inorganic constituents, like trace metals, for pore water sampling. Polyethylene 

(LDPE) or PS are generally used for organic compounds. 
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The membrane pore size controls what molecules are allowed to pass into 

the sample chamber. The operational definition for dissolved phases is "a 

substance that will pass a 0.45 urn pore size filter". This is an industry standard 

that is based more on a manufacturing or operating conditions than on scientific 

data (Mudroc and Azcue, 1995). Carignan et al. in 1985 determined that there 

was no significant difference in pore water constituents or concentration with 

pore sizes as small as of 0.002 urn. Their study showed a further reduction in 

pore size resulted in incomplete equilibration or exclusion of metal complexes. 

Allen (1995) determined that colloidal material passed through a 0.40 urn 

filtration membrane. However, Carignan showed that there were no artifacts from 

colloidal material diffusing through a 0.45 urn membrane. These studies have 

confirmed that using the common membrane sizes of 0.2 urn and 0.45 urn are 

effective for trace metals evaluation. 

A web site useful for choosing membranes was compiled by Nobis Inc. 

Their "Guide to Membrane References" recommends a membrane type based on 

the material being sampled and device used. For each of their selections, they 

list an appropriate reference. The web site url can be found in the reference 

section. 

2.5.5 Preparation, Insertion and Removal 

The peeper, as with any sampling device, must be contamination free 

when inserted into sediment. Proper preparation of peepers is the key to 

eliminating any contamination. Oxygen contamination is believed to be a 

particular problem when studying trace metals. Oxygen contamination can cause 
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artifacts during preparation, insertion or removal of peeper sampling devices 

(Carignan, 1984) (Carignan et al., 1994) (Bufflap and Allen, 1995) (Allen, 1995). 

To eliminate oxygen diffusing out of plastic peeper components, Carignan 

recommends they be kept under an oxygen free atmosphere for at least 30 days 

prior to assembly. The peepers must also meet trace metal cleaning standards. 

Most peeper related studies used Carignan's 1984 paper as their source for 

proper peeper preparation and sample removal. 

Carignan stated that proper preparation of the make up water is a critical 

preparation step. To guarantee the make up water does not contribute artifacts, it 

should be distilled then deoxygenated by bubbled nitrogen for 24 to 48 hours 

prior to use. Allen felt the removal of oxygen was so important that he further 

recommended using argon, a heavier element, instead of nitrogen. As with 

peeper components, Bufflap and Allen affirmed that there were differences in 

iron, manganese and DRP concentrations in peepers assembled with de-aerated 

water verses water not de-aerated. 

Assembling the peeper is a tedious operation. Peepers require between 

10 and 30 screws to attach the cover. The assembled peepers must also be free 

of any air bubbles. To mitigate adding air bubbles, the assembly process is best 

completed under water using the make up water deoxygenated in the peeper 

keepers. After assembly, the peeper should be immediately placed into the 

peeper keeper. The peepers are then deoxygenated for an additional 24 to 48 

hours prior to insertion into the sediment. 
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To avoid contamination, peepers must be inserted into the sediment 

immediately upon removal from the peeper keeper. Depending on the sediment 

characteristics, vertically inserted devices can be pushed in by hand or pounded 

in with a mallet. Divers are used when inserting peepers under more than a few 

feet of water. Care must be taken to not damage the membrane during this 

process. As with the peeper designs, the insertion method is based on what the 

researcher is trying to accomplish. 

Sample removal is completed using a syringe after the peepers have been 

removed from sediment. The fluid removed from the chamber should 

immediately be put into a vial and then acidified for storage. To reduce any 

oxygen-related artifacts, Carignan recommends that sample retrieval be done 

with in 5 minutes of the peeper being removed from the sediment. A related 

study by Loder showed Fe (II) losses in peeper samples were 75% after a 12 

minute exposure to the atmosphere while a study by Lyons et al. had losses of 

81% in 10 minutes. Bufflap and Allen suggest using a nitrogen or argon filled 

glove box as part of the sample retrieval procedure. 

2.5.6 Pros & Cons 

As stated earlier, the peeper is flexible and easily modified to fit 

sampling requirements. Most peeper designs only cause a small disturbance in 

the sediment or cap. Owing to its in-situ nature, there are few artifacts from 

temperature changes or exposure to atmospheric oxygen during the equilibration 

period (Carignan et al., 1985). The dialyzer yields an equilibrated sample of pore 

water which makes it the preferred device for trace metal examination. 
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The biggest drawback to using peepers is preparation. Deoxygenating 

adds at least two days to peeper preparation. The preparation difficulty is greatly 

increased if the field site is a long distance from your laboratory. Ryan Barth, of 

Anchor Environmental, described soaking his hotel room trying to prepare 

peepers there. Previously prepared peepers sent to a field site for Dr. Jeff 

Melton, of UNH Environmental Research Group, arrived with a damaged peeper 

keeper. This necessitated deoxygenating the peepers in his hotel room bath tub. 

Assembly is difficult due to the number of screws used to attach 

membranes and trying to keep air bubbles out of chambers. Small sample size 

and difficult sample removal are drawbacks. Despite its shortcomings, peepers 

have become a valuable tool for sediment pore water sampling. 

2.6 Direct Suction Samplers 

2.6.1 Background 

Direct suction samplers are an active in-situ device designed to collect 

sediment pore water samples. Direct suction methods increased in usage in the 

seventies when concentration changes were discovered in samples extracted by 

squeezing or centrifuging sediment. The artifacts were attributed to temperature 

and pressure difference (Mudroc and Azcue, 1995). The squeezing or 

centrifuging related artifacts are mitigated due to a suction sampler's ability to 

directly extract the pore water from the sediment. Like the peeper, oxygenation 

will affect redox sensitive constituents. 
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2.6.2 Device Specifics 

Samplers can be as simple as a glass modified volumetric pipette or a 

long needle with a plastic syringe. The sampler works by inserting a rigid tube, 

typically made of glass, plastic or stainless steel, into the sediment and extracting 

the pore water with a suction device. The tube is sealed at the bottom but has 

slots or holes for extracting pore water samples. A filter sock, screening, inline 

filter or air stone can be used to eliminate solid sediment components from 

entering the sample container. The suction device can be a syringe or a 

mechanical pump, usually peristaltic type. One benefit of these devices are that 

Inline sensors can be included that allows pore water characteristics to be 

obtained "real time". These sensors can measure pH, conductivity, temperature 

and dissolved oxygen. The pore water sample is discharged into a vial or sealed 

bag. Use of the bladder keeps the sample from coming in contact with 

atmospheric oxygen. This eliminates oxygen being a problem when collecting 

anaerobic pore water samples. 

Commercially manufactured apparatuses, incorporated with suction 

devices specifically designed for them, are commonly used. The simplest 

commercial device is the MHE Push Point. This unit is a V8 or % inch diameter 

stainless steel probe that is effective for collecting shallow water samples. At the 

other end of the spectrum is Coastal Monitoring's Trident Probe. The Trident 

Probe, when incorporated with the UltraSeep Meter, allows direct measurement 

of sediment characteristics. 
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2.6.3 Pros & Cons 

Direct suction samplers offer many advantages. They require little training 

and are not difficult to use. The portable device can be deployed by wading in 

shallow water, from a boat, or by a diver. The sampler works best in sandy loose 

sediment. The sampler's holes or slots can easily become plugged is in fine 

sediment. Direct suction samplers do not offer depth resolution (Bufflap and 

Allen, 1995). 

Their small size causes very litter disturbance in the evaluation site, thus 

making them useful for evaluating caps, environmentally sensitive regions, or 

repeated sampling in the exact area. The size allows them to be used for 

collecting samples from rocky or cobble type sediment. Devices with attached 

measuring equipment in the probe area, like the Trident, are not effective in hard 

bottom conditions. 

The ability of the suction device to obtain a sample is limited as the water 

pressure increases due to depth (Bufflap and Allen, 1995). For example, the 

Trident is limited to a 40 foot depth for its push pole deployment method. The 

EPA noted that temperature reading may be affected by thermoclines in the 

water body or sunlight effects on the equipment. 

Larger devices can be used to collect benthic biological samples. Rostron 

et al. (2001) pointed out that strong suction can damage delicate creatures. 

There is also a concern that the strength of the suction will break up colloidal 

material, possibly increasing measurements of bioavailable concentrations. 

27 



CHAPTER 3 

METHODS & MATERIALS 

3.1 Methods 

3.1.1 Introduction 

Each study in this thesis was designed to examine more than one aspect 

of the hypothesis. For example, the equilibration study also examined oxygen 

effects in the peeper makeup water and filtering options in sample removal. 

Sampling devices evaluated by the studies were vertical peepers, push point 

direct suction device and horizontal peepers. 

Table 3.1: Sediment Location and Characteristics 

Location 

Sediment 
Conditions 

Vertical 
Peepers 

Horizontal 
Peeper 

Cocheco River 

Dover, NH 
1st 5" to 7" 

sandy, below 
clay 

Field Studies 

Mat Insertion 
Study 

Merrimack 
River 

Haverhill, MA 

Sandy 
throughout 

Field & 
Laboratory 

Studies 

Squamscott 
River 

Newfields, NH 

Very fine & 
silty 

Field & 
Laboratory 

Studies 

Cottonwood 
Bay 

Dallas, TX 

Very fine & 
silty 

Mat Insertion 
Study 

Sediment classification and location of sediment sites can be seen in table 

3.1. Sediment from the Cocheco, Merrimack and Squamscott Rivers were used 
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for field experiments. Merrimack and Squamscott River sediments were used to 

evaluate sampling devices under laboratory conditions. Insertion techniques for 

evaluation of reactive mats were completed in mats at the Cocheco River and 

Cottonwood Bay. Cocheco River sediment is sandy for the first five to seven 

inches and clay thereafter. Merrimack River sediment is sandy throughout. 

Squamscott River and Cottonwood Bay sediments are very fine and silty. 

The purposes of the device studies were to: 

1. Evaluate impact of peeper preparation on concentration observed 

2. Evaluate sample removal methods 

3. To compare dialysis and direction suction samplers 

4. Evaluate horizontal peeper insertion techniques 

The peeper preparation portion of the experiments compared oxygen 

levels in the makeup water. Sample removal studies compared filtered and non-

filtered samples. The removal step for one of the experiments compared sample 

exposure to atmospheric conditions with sample removal in a closed nitrogen 

system. 

For each experiment, peepers were scrubbed by hand with Citrad 

concentrated acidic non-phosphate detergent. They were then cleaned in the 

automatic washing machine with non-phosphate soap. Each peeper was acid 

washed following the Environmental Research Group standard acid wash 

procedure. 



The acid wash procedure: 

1. Pre-clean item or soak in cleaning tub 

2. Soak for 48 hours in 50% Nitric Acid 

3. Rinse in RO water at least seven times 

4. Dry in oven (optional) 

The peeper keepers and their components were washed by hand with the 

non-phosphate soap. They were rinsed thoroughly with RO water. Several cups 

of acid from the acid wash station were added the peeper keepers. The keepers 

were sealed then rotated so acid completely covered the inside. The acid was 

drained from the keepers and they were rinsed with RO seven times. The peeper 

keepers were subsequently rinsed with distilled RO water. With the exception of 

the bubbling stone, the peeper keeper components were soaked in the acid from 

the acid wash station for five minutes. These components were rinsed 

individually seven times with RO water. They were subsequently rinsed with 

distilled RO water. The keeper and its components were assembled and filled 

with distilled RO water. 

The appropriate gas was bubbled into the peeper keeper for at least 24 

hours prior to peeper assembly. The peepers were assembled under water, 

using the appropriate makeup water (bubbled air or nitrogen). The assembled 

peepers were placed into the appropriate peeper keeper and gas was bubbled 

for at least twenty four hours prior to insertion. 
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Peepers were transported to the evaluation site in the peeper keepers. 

The peepers were inserted immediately after being removed from the keeper. 

Peepers inserted into the Cocheco and Merrimack River's sediment were driven 

in with a hammer. Peepers in Squamscott River sediment were pushed in by 

hand. Each peeper's location and depth was recorded. 

3.1.2 Equilibration Studies 

The purpose of the equilibration experiments was to determine how long 

the peepers took to reach equilibrium in a variety of sediment types. Since these 

studies were performed in conjunction with the preparation experiments, they are 

also expected to show the effects of oxygen during the equilibration process. The 

experiments were performed under field and laboratory conditions. 

•su

rf. r m 

Figure 3.1: Cocheco Field Equilibration Matrix. 
Peeper inserted in sediment to top of peeper. Peepers were grouped four to a row. Each group 
was attached to a float. The peepers from each group were removed on the same date. 
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The Cocheco River field study involved inserting five sets of peepers. The 

first four sets included four peepers that were also part of the preparation 

experiment. The last set had two peepers. The peepers were removed at weekly 

intervals for one to five weeks. A four by four matrix of was used for weeks one 

through four. Two peepers were inserted for week five. The peeper orientation 

can be seen in figure 3.1 "Cocheco Equilibration Matrix". The peepers were 

inserted into the sediment in the intertidal zone at low tide. They were driven in 

so their tops were even with the top of the sediment. A loop was tied to each 

peeper then each row was attached to a float. 

L__ 

Figure 3.2: Laboratory Equilibration Layout. 
Sediment tub with 1" of river water. Bottom of chamber #2 of peepers set at sediment/water 
interface. 

Four peepers were put in tubs with sediment either from the Merrimack 

and Squamscott Rivers for the laboratory equilibration study. Each tub had at 

least 1" of the appropriate river water covering the sediment. The river water was 

exposed to the top two chambers of the peepers. The peeper layout is shown in 
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figure 3.2 "Laboratory Equilibration Layout". Samples were extracted at weekly 

intervals starting with week two and ending with week five. 

3.1.3 Post Equilibration Studies 

The post equilibration studies evaluated peepers that already reached 

equilibrium with the pore water in the sediment. These peepers were in the 

sediment for four to five weeks. The experiments were run in conjunction with the 

preparation and sample removal evaluations. The laboratory experiments used 

the same tubs of sediment used during the equilibration studies. The peeper 

orientation was changed so different sediment came into direct contact with the 

peepers. The peepers were positioned in the field portion of these studies in a 

similar location as in the equilibration experiments. This allowed the last data 

point in the equilibration evaluation to be included with the post equilibration data. 

3.1.4 Preparation 

The preparation experiment was designed to evaluate the effect of 

dissolved oxygen in the peeper chambers prior to insertion. It compared makeup 

water that had oxygen removed by bubbling nitrogen gas into the peeper keeper 

with makeup water that had oxygen added by bubbling air into it. The oxygen 

effect will be evaluated by determining the concentration of dissolved iron 

species in the samples. Heavy metals concentrations will be examined to see if 

any are "co-precipitating" with or adsorbed the iron oxides. 

A standard fish tank bubbler was used to add air. Ultra high purity nitrogen 

was introduced from a 300 ft3 tank. Figure 3.3 shows the bubbler setups. The 
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orange peeper keeper is attached to the fish tank bubbler while the blue keeper 

is attached to the nitrogen tank. Dissolved oxygen levels were measured with a 

YSI multipurpose probe before gas bubbling, prior to peeper assembly and prior 

to transporting to investigation site. 

Figure 3.3: Makeup Water Preparation. 
Orange peeper keeper with air bubbled. Blue peeper keeper with nitrogen bubbled. 

The field study setup in the Cocheco River is shown in figure 3.1: Cocheco 

Field Equilibration Matrix. Samples were removed as part of the equilibration 

study. A set of two peepers, one prepared with air bubbling and one with 

nitrogen, were put into the Merrimack and Squamscott Rivers. They were 

inserted in the proximity of where the sediment was removed for the laboratory 

study. Samples from these peepers were removed after a five week equilibration 

time. 
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For the laboratory portion of the study, sediment from the Merrimack River 

was put into two tubs, as was sediment from the Squamscott River. One tub from 

each sediment type was labeled "Air" and the other was labeled "Nitrogen". The 

arrangement can be seen in figure 3.4: "Laboratory Sediment Setup". The light 

colored sediment on the left came from the Merrimack River. The darker 

sediment on the right came from the Squamscott River. Samples were extracted 

as described in the equilibration study. 

V ' • \ '••••• 

Figure 3.4: Laboratory Sediment Setup 
Left tubs Merrimack River sediment. Right tubs Squamscott River sediment. Top tubs have 
nitrogen purged peepers. Bottom tubs have air purged peepers. 

3.1.5 Device Comparison 

The device comparison study evaluated pore water samples from vertical 

peepers and the push point direct sampling device. The purpose of this study 
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was to compare results from the two devices. The study also compared push 

point extraction techniques. Standard procedure calls for removing pore water 

until the line is clear of most of the solids before collecting the sample. The study 

compared filtered, unfiltered and the initial unfiltered pore water samples with 

each other and the peepers. The purpose of filtering the direct suction samples 

was two fold. The first reason was to determine if solid components of the pore 

water are affecting the sample. Peeper samples go through a membrane as part 

of the dialysis process. Therefore, filtering push point samples will allow 

comparisons of device samples that have been through a 0.45mm filter. The 

extraction filtering technique will be discussed in a subsequent section. 

Figure 3.5: Push Point Extraction Setup 
Push point extraction tube attached to peeper face with 1" thick block. 

Push point samples were extracted approximately 1" from the face of the 

peepers just prior to their removal. The close proximity of the push point device 
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was to extract pore water with the same constituent concentrations as was 

equilibrated in the peeper. The extraction setup can be seen in figure 3.5: "Push 

Point Extraction Setup". The same spacer block was used for each extraction. 

3.1.6 Extraction Techniques 

In the first experiments, peeper samples were removed within two hours of 

peeper extraction. After it became evident that atmospheric oxygen may be 

causing a problem, sample removal started within five minutes of peeper 

extraction. A different disposable syringe was used for each of the peeper 

chambers. Figure 3.6: "Sample Removal with Syringe", depicts a sample being 

removed from a peeper. 

Figure 3.6: Sample Removal with Syringe 

Part of the extraction procedure was to compare filtered and unfiltered 

peeper samples. This technique was designed to evaluate the amount of ferric 

oxide that may have precipitated in the chambers due to oxygen in the makeup 

water or device material. The comparison was conducted for both the 
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equilibration and post equilibration studies. Figure 3.7: "Syringe & Filter" is a 

picture of the devices. Upon extraction of the sample, the needle is removed from 

the syringe and replaced with the filter. The sample is then pushed through the 

filter into a vial. 

The syringe filter was used for the filter portion of the push point extraction 

study. Pore water was pumped into a vial from the suction device. The sample 

was then extracted from the vial with a syringe. It was then filtered, with the same 

technique as employed with the peepers, into a clean vial. 

Figure 3.7: Syringe & Filter 

Oxygen effects on sample removal were evaluated by comparing samples 

removed in a nitrogen filled glove box with those removed exposed to the 

atmosphere. This study was performed in conjunction with the laboratory post 

equilibration peeper experiment and the corresponding push point evaluation. 

For this study, all the needed sample extraction equipment was placed into the 

glove box. Nitrogen was forced into the vials and syringes to displace any 

oxygen. Time was allowed for the oxygen to leave the glove box before any 

samples were extracted. Peepers were immediately inserted into the glove box 

after removal from the sediment and the samples were extracted. The push point 
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tubes were filled with nitrogen from the glove box prior to sample recovery. 

Afterwards, the samples were removed in the glove box using the previously 

defined push point procedure 

3.1.7 Peeper Evaluation of Reactive Mats 

'"' V * ' ) 

r I ^ . . . " . / j j 

Figure 3.8: Cocheco River Reactive Mat with Peeper 
Horizontal peeper is between strainer filled with sand and reactive mat. Paving block will sit on 
top of strainer to hold in place. 

One of the objectives of this thesis was to determine the best method for 

evaluating the effectiveness of geo-textile reactive mats. It was determined, with 

significant input from Scott Greenwood, that the horizontal peeper design was 

the best tool for this purpose. Two field studies were designed to determine the 

best method for inserting the peepers. The Cocheco River study was performed 

on 6' x 6' mats previously placed in the intertidal zone. The corner of the mat was 

lifted to expose the sediment below it. A horizontal peeper was placed on top of 

the sediment and the mat was folded back over it. The method designed by Scott 

Greenwood for evaluating the top was to put the peeper inside a strainer lined 

with fine stainless steel screening and filled with sand. The strainer was flipped 

39 



over on top of the mat above the peeper that was placed below the mat. The 

picture depicted in figure 3.8 "Cocheco River Reactive Mat with Peeper" shows 

the setup. A paving brick was placed on top of the strainer to hold it in place. 

Figure 3.9: Horizontal Peeper With Bar & Attachments. 
Two SPMEs are attached to the peeper sides. SPMO is attached to cross piece on bar. 

The insertion exercise conducted at the Cottonwood Bay site was also 

designed in conjunction with Scott Greenwood. The Cottonwood Bay site has 

three mat arraignments that each covers a 25' x 25' area at a depth of 

approximately 6'. These arrangements include a mat with no cap, a mat with a 

sand cap and a double mat. A 5' multipurpose aluminum flat bar was designed to 

attach to the horizontal peeper to aid in insertion and removal. The bar was used 

to slide the peeper under the mats or between the double mats, approximately 4' 

in from the edge of the mats. The weight of the bar allowed it to be used to hold 

the peeper down when placed on top of the mats. Each bar was attached to one 

of the mat anchors. This was to keep the peeper secure and aid in finding them 

for removal. The insertions and removals were performed by a professional diver. 

The image in figure 3.9 shows the horizontal peeper attached to the bar with 

solid phase micro-extraction (SPME) and semi-permeable membrane (SPMD) 



sampling devices attached. These devices are designed to measure organic 

contamination in the pore water. 

3.1.8 Analysis 

A Varian AX Simultaneous Inductively Coupled Plasma Atomic Emission 

Spectrometer (ICP) was used to analyze pore water for twenty four metals. The 

list of metals included Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, 

Na, Ni, Pb, Sb, Se, Sr, Ti, V and Zn. Analysis for nitrate (N03), chloride (CI) and 

sulfate (S04
2) ions were performed on an ion chromatograph by the UNH Water 

Resources Research Center. The Water Resources Research Center also used 

a colorimeter to measure NO2" and the combination of NO3" + NCY. 

The amount of iron and manganese, redox sensitive elements, was used 

to determine the affects of oxygen on sample concentrations. Heavy metals with 

concentrations higher than the detection limits of the ICP were used to evaluate 

co-precipitation with iron and manganese oxides. The ions analyzed on the ion 

chromatograph and colorimeter were examined to understand the influence of 

oxygen. 

Comparisons of metal and ion concentrations will be completed using the 

independent student's t-test. The equilibration study was evaluated by 

examining, on a line graph, time vs. concentration. Comparing the standard 

deviations of the points was considered for evaluating when the peepers reached 

equilibrium. Depth gradients were evaluated in a vertical bar graph. 
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3.2 Materials 

3.2.1 Introduction 

The sampling material and accompanying components are described in 

this section. Drawings, manufacturing specifics and descriptions of the devices 

designed by the author are included. These devices include the vertical peepers, 

horizontal peepers, the peeper keeper's inner components and the horizontal 

peeper insertion bar. Purchased devices, like the push point device and 

peristaltic pump, are described with their costs and purchase locations 

highlighted. 

3.2.2 Vertical Peeper 

The vertical peeper design, as described in section 2.5.1, is a modification 

of peepers availible from Rickley Hydrological Company. Those peepers were 

larger and more expensive than what was needed. The peeper body, seen in 

figure 3.10, has 15 chambers that are opened at the face. Twelve of the 

chambers have a volume of 13.5 ml. The other three chambers are split into two 

sections to accommodate attachment screws. The cover, seen in figure 3.11, is 

used to hold the membrane on the body. The cover configuration controls the 

active area of the peeper. For each chamber the active area is 1.688 in2. The 

body and cover are attached with seventeen #10-32 5/8" long stainless steel 

screws. Socket cap screws were found to be easier to remove than Phillips head. 

Table 3.2 shows the part description, manufacturing/purchase location and cost. 
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Table 3.2: Vertical Peeper Purchasing Information 

Description 

Peeper Body & Cover 

#10-32 5/8" long 
stainless steel screws 

Manufacturer/ 
Purchase location 

Plastic Supply Inc. 
735 E. Industrial Park Dr. 
Manchester, NH 03709 
800-752-7759 
www.plasticsupply.com 
McMaster-Carr 
562-463-4277 
www.mcmaster.com 

Part* 

Porewater 
Sampler 
Drawing 1-2 
Mod 2 

92949A267 

Cost 

$86.88/unit 

$10.54/100 

http://www.plasticsupply.com
http://www.mcmaster.com
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Figure 3.1i: Vertical Peeper Cover Drawing (2 of 2). 
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3.2.3 Horizontal Peeper 

The horizontal peeper design consists of three parts: a body and two 

covers. The body dimension and hole location drawings are shown in figures 

3.12 and 3.13, respectively. The cover is shown the figure 3.14. The horizontal 

peeper is a three chamber device with the face and back open. The volume of 

each chamber is 27.5 ml. The body has two side attachment locations to 

accommodate SPME and SPMD devices. The cover openings are slightly 

smaller to help keep the syringe from penetrating through the back membrane 

when removing the sample. The resulting active area is 2.8 in2 per side. Each 

cover is held in place with eight #10-32 5/16" long stainless steel screws for a 

total of sixteen screws per peeper. Phillips head screws were found to work well 

for the horizontal peepers. Table 3.3 shows the part description, manufacturing 

or purchase location and cost. 

Table 3.3: Horizontal Peeper Purchasing Information 

Description 

Flat Peeper with 
SPME Chambers 
Body, Hole Layout & 
Cover 

#10-32 5/16" long 
stainless steel screws 

Manufacturer/ 
Purchase location 

Plastic Supply Inc. 
735 E. Industrial Park Dr. 
Manchester, NH 03709 
800-752-7759 
www.plasticsupply.com 
McMaster-Carr 
562-463^*277 
www.mcmaster.com 

Part* 

Drawing 1-3, 
1 Body & 
2 Covers 

91772A826 

Cost 

$54.00/unit 

$9.74/100 
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3.2.4 Membrane 

The membrane chosen for these studies was the 0.2 urn HT Tuffryn© 200 

membrane. A 12" x 50' roll was purchased from Pall Corporation (tel: 800-521-

1520). The membrane's specifications can be seen in table 3.4. 

Table 3.4: Membrane specifications 

Filter Media 
Pore Size 
Typical Thickness 
Typical Water Flow Rate 
Cost 

Hydrophilic polysulfone 
0.2 pm 
152 pm 
14 mL/min/cm2 at 0.7 bar 
$282.80 

Figure 3.15: Membrane Roll & Sizing Equipment. 
Peeper cover is used as template for cutting membrane to size. 

Each peeper type required a different size membrane to be cut from the 

roll. Using the peeper cover as a template is the easiest way to guarantee the 
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proper size. Care must be taken to keep the membrane free of any 

contamination. The equipment and cut membrane can be seen in figure 3.15. 

3.2.5 Peeper Keeper 

The purpose of the peeper keeper is to prepare the deoxygenated water 

and transport the peepers to the examination site. The keeper should be made of 

sturdy material to handle these functions. Rubbermaid® 5-gallon job site water 

cooler was chosen. A number zero rubber cork is used to seal the inside of the 

dispenser of the water cooler. The container can be seen in Figure 3.3: Makeup 

Water Preparation. A rack, made of acrylic, was constructed to hold the peepers 

above the gas bubbler. The bubbler was a standard fish tank bubbling stone. 

Figure 3.16 shows the internal peeper components. 

Figure 3.16: Peeper Keeper Components 
Rack is used to keep peepers above aerator. Aerator is seen with attachment tubing. Rubber cork 
is used to plug keeper drain from the inside. 
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3.2.6 Push Point Samper 

MHE Products Extreme (PPX36S) push point sampler was used in the 

device comparison studies. This direct suction sampler is a three foot long rigid 

1/4-inch diameter stainless steel probe. Vertical slots are located one inch above 

the bottom of the unit. A battery operated Geopump™ peristaltic pump is used to 

pull the sample through the device and attached VA" diameter tubing. The push 

point setup is shown in Figure 3.17 Push Point Field Setup. In the right side of 

the figure, the device is attached to a peeper. The pump and battery can be seen 

on the left side. 

Figure 3.17: Push Point Field Setup. 
Peristaltic pump with battery is attached with tubing to push point sample rod. The push point is 
attached to face of field peeper with 1" thick block separator. 
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CHAPTER 4 

RESULTS & DISCUSSION 

4.1 Peeper Evaluation 

4.1.1 Introduction 

The purpose of the peeper evaluation section is to discuss the capabilities 

and limitations of the device. Selected data will be used to show how 

equilibration and depth profiling can be used to evaluate a contaminated 

sediment site. Each peeper was analyzed for twenty elements. This section will 

also determine which metals will be included for evaluating oxygen affects, 

peeper preparation and sample removal techniques. It should be noted that the 

laboratory tubs all exhibited out gassing when the peepers were inserted. 

4.1.2 Heavy Metal Analysis 

The first step in the analysis process was to determine which metals will 

be investigated. Iron and manganese were chosen due to being redox sensitive. 

To choose the other heavy metals to be analyzed, the results from each 

sediment type were examined to see which metals meet the selection criteria. 

The selection criteria included results from equilibrated peepers with chambers at 

least 1" below the sediment surface and concentrations above the minimum 

analysis detection level (MDL) in all sediment types. The selection criteria were 
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determined so a consistent comparison can be made from the different sediment 

types. 

I 
o 
o 

Equilibrated Field Experiments 
Y77A N2UnHtered 
I I N2 Filtered 
IS?\1 Air UnHHered 
I I Air Filtered 
I I MDL 

"I I1 f " "'I T" " r • T I1' 

Al As Ba Ca Cd Cr Cu Fe K Mg Mn Ni Pb Sb Se Sr V Zn 

Figure 4.1: Cocheco River Sediment Metal Concentrations 
Equilibrated field peeper sample concentrations. Concentrations are averages of peeper cells 
from 1" below the surface to the bottom of the peepers. 

The data examined are from laboratory results of Merrimack and 

Squamscott Rivers and field results from the Cocheco River. The data was 

arranged in charts 4.1,4.2 and 4.3. Each metal category is divided according to 

the purge gas and removal technique. The bar representing nitrogen purging is 

blue and the bar representing air is red. Unfiltered samples have hatched bars 

while filtered samples are a solid color. The fifth bar is the metal's MDL. 
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Figure 4.2: Merrimack River Sediment Metal Concentrations 
Equilibrated laboratory peeper sample concentrations. Concentrations are averages of peeper 
cells from 1" below the surface to the bottom of the peepers. 

i r 
Mn Ni Pb Sb Se Sr V Zn 

Figure 4.3: Squamscott River Sediment Metal Concentrations 
Equilibrated laboratory peeper sample concentrations. Concentrations are averages of peeper 
cells from 1" below the surface to the bottom of the peepers. 



Each sample required two vials, one for metal analysis by the ICP and one 

for anion analysis by the colorimeter. The colorimeter analysis requires vials to 

be topped off so there is no air pocket at the top. To accommodate the volume 

needs of the colorimeter, two chambers were needed to supply enough volume 

for each data point. This resulted in the fifteen chamber peepers being reported 

as seven samples. Sample one comprised of chambers 1 and 2. Sample two 

comprised of chambers 3 and 4. The pattern continued until chambers 13,14 

and 15 (the bottom chambers) were combined for sample seven. For the 

laboratory studies each peeper had the sediment water body interface between 

chambers 2 and 3. Chambers 3 through 7 were used for the analysis. For the 

field studies the equilibrated peepers (week five) from the 

equilibration/preparation studies were used. The peepers for the Cocheco field 

studies, which did not have anion data collected, were set at different levels in 

the sediment. The data was normalized for analysis of peepers. The chambers 

included in the average were from 2" below the sediment surface to the bottom of 

the peeper. For the laboratory analysis, the data from four to six peepers were 

used for the equilibrated average. The analysis of Cocheco field data was 

completed on two peepers from each category. The metals that met the selection 

criteria and were chosen for analysis, along with iron and manganese, were 

cadmium, chromium, strontium and zinc. The criteria for selection required each 

metal to be above the MDL in all of the sediments. Metal were also selected 

based on their toxicity. For example, calcium and magnesium were not chosen 

because they are rarely a health risk. 
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4.1.3 Equilibration 

This section looks at equilibration in general with field and laboratory 

results compared. The field studies were performed in the intertidal zones on the 

Cocheco River. The resulting pore water movement through the sediment may 

have affected the equilibrium times. This movement can cause concentration 

changes in the pore water constituents by recharging or removing them from the 

area around the peeper. Increased hydraulic pressure may also force the 

constituents across the membrane. The laboratory experiments were performed 

on sediment from the Merrimack and Squamscott Rivers in stagnant tubs that 

had no pore water movement. Therefore, there are no outside forces present to 

affect the equilibration results. The equilibration time line is one of the indicators 

of oxygen effects from the peeper preparation. The equilibration time study 

comparing purge gas type will be examined in a subsequent section. 

A linear regression t-test in Microsoft Excel was used to examine the 

equilibration trend lines for selected metals. The regression line calculation 

produces an r2 with a value between 0 andl. A value r2 of one indicates all of the 

data points are on the regression line. A value of zero means there is no 

relationship between the independent (time) and dependent (concentration) 

variables. That regression line will have a zero slope. The t-test will generate a P-

value which is a determination of the probability the data points are on the 

regression line. The null hypothesis, slope is equal to zero, is true if the P-value 

is greater than the confidence level of the test. A zero slope indicates there is no 

relationship between time and concentration and that equilibration has been 
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reached. The regression lines were tested at the ninety percent confidence level. 

The difficulty of using the regression tool for analysis of equilibration in this study 

is there are only four data points for each trend. The peepers used to determine 

equilibration trends in the field experiments were removed at weeks 1, 2, 3 & 5 

while peepers for the laboratory experiments were removed at weeks 2, 3, 4 & 5. 

Iron concentration equilibration trends are shown in figure 4.4 "Iron 

Equilibration Trends". A visual inspection of the graphs indicates that 

equilibration has been reached by week one in the field study on the Cocheco 

River. P-value is 0.55 and the r2 is 0.2 which are also indicate equilibration has 

been reached. In the laboratory studies, the equilibration line is trending up to the 

four week point. Since three points are required for the regression test, 

equilibration can not be validated at four weeks. It should be noted that the 

Squamscott River trend line appears flat throughout but the r2 is about 0.9 for the 

regression analyses consisting of weeks 2 through 5 and weeks 3 through 5. 

Cadmium concentration trends shown in figure 4.5 are similar to those of 

iron but at different concentration levels. The regression line test are also similar, 

indicating equilibration has been reached in the Cocheco River by week one and 

in the Merrimack and Squamscott Rivers by week four. 
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Figure 4.4: Iron Equilibration Trends 
Cocheco River data is from field analysis. Merrimack and Squamscott River data is from 
laboratory analysis. Iron concentrations for each sample date are averages of peeper cells from 
1" below the surface to the bottom of the peepers. 
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Figure 4.5: Cadmium Equilibration Trends 
Cocheco River data is from field analysis. Merrimack and Squamscott River data is from 
laboratory analysis. Cadmium concentrations for each sample date are averages of peeper cells 
from 1" below the surface to the bottom of the peepers. 
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Figure 4.6 Chromium Equilibration Trends 
Cocheco River data is from field analysis. Merrimack and Squamscott River data is from 
laboratory analysis. Chromium concentrations for each sample date are averages of peeper cells 
from 1" below the surface to the bottom of the peepers. 



Chromium concentrations, seen in figure 4.6, for the Cocheco River 

appear visually to have reached equilibration by week four. However, r2 is 0.85 

for the regression analysis for weeks 1 through 5 and 0.95 for weeks 2 through 5 

which indicates equilibration has not been reached. Equilibration of chromium 

concentrations in the Merrimack River looks like it has been reached by week 

one. The P-value for the regression analyses consisting of weeks 2 through 5 

and weeks 3 through 5, pass the null hypothesis test. The r2 value for those 

analyses is 0.6 and 0.5, respectively. 

The regression tests for strontium in the Cocheco indicate it has not 

reached equilibration by week 3. Manganese and zinc both reached equilibration 

in the Squamscott by week one. 

Another predicted trait of the equilibration time line is that the standard 

deviation should be reduced the longer the peepers stay in the sediment. This 

should be especially true for the laboratory studies where the sediment is not 

being recharged by pore water migration. A case can be made for standard 

deviation change in the field studies due to tidal influences, storm water runoff or 

ground water fluxes. 

The Cocheco field study standard deviations were more consistent than 

those of the Merrimack River laboratory study (figures 4.4,4.5 & 4.6). The 

Squamscott River sediment show similar consistency to that of the Cocheco 

River. A possible explanation for the consistency in the Cocheco River data is 

that only one peeper was used for each time period. One reason for the lack of 

consistency for the laboratory study is data for the equilibration trends came from 
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multiple peepers. Deviations in the data may also be a result of differences in the 

concentration depth gradients of the peepers. It should be noted that the depth 

profiles will be evaluated in a subsequent section. 

The general results for peeper equilibration were within those predicted by 

Carignan that equilibrium should take between two and three weeks depending 

on temperature and hydraulic conditions. The industry standard is between three 

and four weeks. It was expected that equilibrium should be reached somewhere 

between two to four weeks. Equilibrium in the field study on the Cocheco was 

reached between one and two weeks. In the laboratory studies in the Merrimack 

and Squamscott Rivers, it was reached after four weeks. Equilibration was 

different based on the metal. For example, iron and zinc equilibrated faster than 

strontium. 

4.1.4 Depth Profile 

One of the benefits of the multi-chambered vertical peeper is a depth 

profile of the sediment is available. The peeper seen in Figure 4.7 "Cocheco 

River Peeper" shows how the chambers can report a depth profile. In the picture 

the top of the peeper is to the right. The rubber band indicates the 

sediment/water body interface. The dark orange color, in chamber 5 through 7 

(from the top), show the aerobic/anaerobic interface in the sediment. 

A depth profile can be used to indicate movement direction of dissolved 

metal ions. Data from one peeper will give a profile of that spot in the sediment. 

Data from multiple peepers can be combined to characterize an area of 

sediment. To get a true picture of a sediment field, both methods are used. 
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Figure 4.7: Cocheco River Peeper 
Peeper removed from Cocheco River field site. Top of peeper is to right. Rubber band is set at 
sediment/river water interface. Dark orange just below the rubber band is aerobic area of 
sediment. Below the dark orange is the anaerobic area. This section was white when peeper was 
initially removed from the sediment (orange tint occurred after exposure to atmosphere). 

Figure 4.8 "Merrimack River Iron Depth Profile" shows a depth profile of 

multiple peepers. The data is from the Merrimack River Laboratory experiment. 

The thin bars are iron concentrations of the individual peepers while the thick bar 

is the average. The standard deviation is indicated for the average 

concentrations. The general depth trend show iron concentration increases to a 

depth of 63mm where it then stays relatively consistent. Each individual peeper 

also shows this trend with the exception of the last value for peeper #2. The 

water body above the sediment shows very little iron. This is an indication of the 

redox environment throughout the sediment bed. 
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Figure 4.8: Merrimack River Air Purged, Unfiltered Iron Depth Profile 
Depth profiles are from peepers removed from the Merrimack River laboratory sediment. The thin 
bars are individual peeper while the thick bar is the average of those peepers. Each depth 
represents two adjacent peeper cells. The exception is depth -146, which is the last three cells of 
the peepers. 

Data from a series of individual peepers will show the anomalies 

responsible for the standard deviation. Figure 4.8 "Merrimack River Iron Depth 

Profile" is an example this concept. The average concentration for the depth of 

146mm is 81.5ppm with a standard deviation of 36.5. The high standard 

deviation is due to peeper #2 having a concentration much lower than those of 

peepers #1 and #3. 

The ability to provide a sediment pore water depth profile is a principal 

attribute of the vertical peeper. The depth profile is a key tool used to evaluate 
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how the pore water is interacting with the water body above the sediment and the 

ground water below it. It also provides information on historical contamination 

and possible ecological impacts 

4.2 Evaluation of Oxygen Effects 

4.2.1 Introduction 

Evaluating the effects oxygen has on peeper material, preparation and 

sample removal is a central theme of this thesis. This section will examine 

influences that oxygen introduction has by looking at how the purge gas type and 

filtering techniques affect metal concentrations determined from sediment 

sampling. Since oxygen introduction affects redox sensitive metals by changing 

their state, they will be looked at first. The selected heavy metals will then be 

evaluated. 

4.2.2 Redox Sensitive Metal Equilibrated Analysis 

This section will evaluate oxygen effects on sampling of redox sensitive 

metals iron and manganese. Analysis of filtered and unfiltered samples from 

nitrogen and air purged peepers will be compared. Concentrations are averages 

of peeper cells from 1" below the surface to the bottom of the peepers. 

The results shown in Figure 4.9 "Overall Iron and Manganese 

Concentrations" are for peepers equilibrated for four to five weeks. The graphs 

show iron in peeper samples with nitrogen purged gas preparation was equal or 

less than iron in air purged ones. The difference between filter options, which will 

be discussed in detail in a later section, were mixed and showed no trend. 
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Merrimack River sediment has high standard deviations for iron in three of the 

four categories displayed. The manganese results were also mixed and showed 

no trends. The average concentration and standard deviations for manganese in 

Merrimack River pore water were similar to those for iron. 
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Figure 4.9: Overall Iron and Manganese Concentrations 
Charts are equilibrated concentrations of redox sensitive metals, Fe & Mn. Cocheco River data is 
from field analysis. Merrimack and Squamscott River data are from laboratory results. 
Concentrations are averages of peeper cells from 1" below the surface to the bottom of the 
peepers. Each sediment analysis shows the purge gas the peepers were prepared with and the 
filtering option the sample was removed with. 
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The depth profiles for metals in the Merrimack River sediment equilibrated 

in laboratory studies were expected to be low near the surface and increase with 

depth. Figure 4.10, "Merrimack River Iron Depth Profile" represents the two tubs 

the laboratory experiments were conducted in. Both tubs show dilution from the 

river water sitting above the sediment. The peepers profiled are from two 

equilibrated peeper studies. Variations in the nitrogen purged, filtered peepers 

can be attributed to the concentration differences between peepers 8-1PMN and 

8-3PMN (figure 4.10). In the air purged, filtered, large variations are seen in 

peepers 8-3PMA and 10-6PMA (figure 4.10). This phenomenon is especially 

evident at the depth of -146mm in both purge gas types. 
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Figure 4.10: Merrimack River Filtered Iron Concentration Depth Profiles 
Iron depth profiles are from peepers removed from the Merrimack River sediment laboratory 
analysis. The chart on the left is from peepers prepared with nitrogen purged gas. The chart on 
the right is peepers purged with air. The thin bars are individual peeper while the thick bar is the 
average of those peepers. Each depth represents two adjacent peeper cells. The exception is 
depth -146, which is the last three cells of the peepers. 



The depth profiles for the Squamscott River (figure 4.11), also a laboratory 

study, was expected to be similar to those of the Merrimack River. The 

concentration of the nitrogen purged peepers at each depth had low standard 

deviations. Depths -63mm to -114 had consistent iron concentrations. The air 

purged tub showed an increasing trend from top to bottom. The depth profile of 

peepers purged with nitrogen and air in the laboratory studies behaved as 

predicted. Iron concentrations were expected to be low near the surface and 

increase with depth. 

E 

Q. 
<D 
Q 

12 

-13 

-38 

-63 

-89 

-114 

-146 

h N 2 Purged, Filtered 

I | Combined 
H 7-5PSN 
[ |8-3PSN 
| | 8-1PSN 

12 4 

-13 

-38 

-63 

-89 

-114 

-146 

Air Purged, Filtered 

5 10 15 20 

Concentration (ppm) 

I l Combined 
H i 7-5PSA 
[ | 8-3PSA 
I | 8-1 PSA 

5 10 15 20 

Concentration (ppm) 

Figure 4.11: Squamscott River Filtered Iron Concentration Depth Profile 
Iron depth profiles are from peepers removed from the Squamscott River sediment laboratory 
analysis. The chart on the left is from peepers prepared with nitrogen purged gas. The chart on 
the right is peepers purged with air. The thin bars are individual peeper while the thick bar is the 
average of those peepers. Each depth represents two adjacent peeper cells. The exception is 
depth -146, which is the last three cells of the peepers. 
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The depth profile for the Cocheco River, depicted in Figure 4.12 "Cocheco 

River Iron Depth Profile", is from two studies for equilibrated peepers. The iron 

concentrations were significantly different so they were shown in separate 

graphs. Data from 9-1FC study is on the left while 1-60XY study is on the right. 

The Cocheco river studies did not include anion data so each chamber 

had a depth reading associated with it. In the 1-9FC study the peeper chamber 

#3 was at the water body/sediment interface. In the 1-60XY study the top of the 

peeper was set at the top of the sediment. The peepers from both studies have 

depth reading between 64mm and 152mm below the sediment. The studies were 

done approximately fifty feet from each other. 
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Figure 4.12: Cocheco River Filtered Iron Concentration Depth Profile 

Iron depth profiles are from peepers removed from the Cocheco River sediment field analysis. 
Each chart is from a single peeper. The third chamber of peepers for the charts on the left was 
set at the sediment water interface. The top of peepers for the charts on the right was set at the 
sediment water interface. Charts on the top are from peepers prepared with nitrogen purged gas. 
Charts on the bottom are from peepers purged with air. 



In both studies, air purged peepers have higher iron concentrations than 

nitrogen purged peepers. Similar to the Merrimack and Squamscott River data, 

the Cocheco had very little iron in the water body above the sediment. Iron 

concentrations below 114mm for the nitrogen purged 1-60XY5B peeper were 

consistent. The air purged peeper for that study had a trend of reducing 

concentrations. There were not trends evident in the 1-9FC study. 

The independent t-tests for redox metals are shown in Table 4.1. They 

were determined with a 95% confidence level for each category. The 

independent t-test was chosen as an evaluation tool due to differences in 

laboratory sediment tubs and peeper chambers. Also, since the analysis was 

completed for constituent average concentration, the averages were based on 

individual chambers for all the peepers in a category. 

The results were mixed for iron concentrations in the Cocheco River (table 

4.1). Unfiltered peeper t-tests indicated there was no difference in the purge gas 

type. While the filtered data showed that air purged peepers had a higher 

concentration. Both filtering options for iron in the Merrimack River pore water 

indicated that air purged peeper peepers had a higher concentration (table 4.1). 

In the Squamscott River zero was included in the interval so there was no 

apparent difference between purge gas types (table 4.1). Zero was included in all 

the difference intervals for manganese in all the sediment. The exception was 

Merrimack River filtered peepers. 
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Table 4.1: 95% Confidence Independent t-tests for Redox Metals 

Preparation purge gas comparisons are equilibrated concentrations of redox sensitive metals, Fe 
& Mn. Cocheco River data is from field analysis. Merrimack and Squamscott River data are from 
laboratory results. Concentrations used in the comparison are averages of peeper cells from 1" 
below the surface to the bottom of the peepers, df = degree of freedom; V0.025 are from student t-
test tables 

Metal 

Fe 

Mn 

Sediment 

Cocheco 

Merrimack 

Squamscott 

Cocheco 

Merrimack 

Squamscott 

Comparison 

N2 vs. Air 
Unfiltered 
N2 vs. Air 
Filtered 
N2 vs. Air 
Unfiltered 
N2 vs. Air 
Filtered 
N2 vs. Air 
Unfiltered 
N2 vs. Air 
Filtered 
N2 vs. Air 
Unfiltered 
N2 vs. Air 
Filtered 
N2 vs. Air 
Unfiltered 
N2 vs. Air 
Filtered 
N2 vs. Air 
Unfiltered 
N2 vs. Air 
Filtered 

df 

50 

50 

38 

37 

18 

28 

50 

50 

38 

37 

18 

28 

t 

2.009 

2.009 

2.024 

2.026 

2.101 

2.048 

2.009 

2.009 

2.024 

2.026 

2.101 

2.048 

Interval (ppm) 

5.415 

-1.354 

-7.418 

-13.72 

2.672 

10.56 

3.026 

1.775 

2.198 

-0.1808 

0.0658 

0.2360 

-7.167 

-12.44 

-44.88 

-67.88 

-2.828 

-7.821 

-0.841 

-1.002 

-2.570 

-8.835 

-0.0908 

-0.1860 

The prevailing evidence is that there is no difference in equilibrated 

peeper concentration for redox sensitive metals with or without oxygen present 

during preparation. 
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4.2.3 Redox Sensitive Metal Equilibration Trend Analysis 
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Figure 4.13: Merrimack & Squamscott Rivers Iron Equilibration Trend 
The iron equilibration trends are from laboratory analysis of filtered peeper samples for average 
cell concentrations for depths 63mm to 145mm below the sediment. 

A major part of the theory presented in this thesis is that oxygen effects 

will be mitigated the longer the peeper is kept in the sediment. Any oxygen 

present in the peeper material or makeup water will be dissipated in the sediment 
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or consumed by microbial activity during the equilibration period. Since redox 

metals have reduced concentrations near the sediment surface, the depth range 

chosen for analysis of equilibration trends was 63mm to 145mm below the 

sediment. Laboratory results are depicted in Figure 4.13 "Merrimack & 

Squamscott Rivers Iron Equilibration Trend". The Squamscott River and nitrogen 

purged Merrimack River peepers appear to have reached equilibrium at the four 

week mark. The air purged Merrimack River results are still trending upwards. 

The Merrimack River trends have a large standard deviation while those for the 

Squamscott River are more consistent. In the Merrimack River, the air purged 

concentration for iron is higher for all points. In the Squamscott River the trend 

changes after the peepers have reached equilibrium. 

The depth profile for the individual Merrimack River peepers can be seen 

in Figure 4.14 "Merrimack River Iron Equilibration Trend Depth Profile". The 

results for the nitrogen purged peepers at a depth of 145mm are suspect. The 

results for Week 4 peepers, at 145mm, have a much greater concentration than 

the peepers from the other weeks. However, the results seem to be in line with 

week 4 results from other depths. The week 3 results, for air purged peepers, are 

lower than those in week 2 for depths 89mm to 145mm. The significant 

concentration variation between the peepers at each depth is responsible for the 

large standard deviation in the Merrimack River equilibration trends (figure 4.13). 

75 



E 
E 

Q. 

Q 

12 

-13 H 

-38 

-63 

-89 

-114 

-145 

Fe, N2 Purged, Filtered 

Week 2 
Week 3 
Week 4 
Week 5 

12 

-13 

-38 

E -63-1 

-114 

-145 -m 

Fe, Air Purged, Filtered 

0 20 
Zero 

40 60 80 100 120 

Concentration (ppm) 

o 
Zero 

^m Week 2 
I I Week 3 
I 1 Week 4 
• • I Week 5 

50 
— i — 

100 
—r— 

150 200 

Concentration (ppm) 

250 

Figure 4.14: Merrimack River Iron Equilibration Trend Depth Profile 
Iron concentration depth profiles of filtered peeper samples removed from the Merrimack River 
sediment for laboratory evaluation of equilibration trends. The peepers used for the chart on the 
left were purged with nitrogen during preparation. The peepers for the chart on the right were 
purged with air. 

The laboratory analysis of manganese equilibration trends can be seen in 

Figure 4.15 "Merrimack & Squamscott Rivers Mn Equilibration Trend". The 

manganese concentrations for the Squamscott River peepers reached 

equilibration at week 3. The Merrimack River manganese trends were a little 

erratic. Nitrogen purged peepers appeared to reach equilibration at four weeks 

while the air purged peepers were still trending up at five weeks. Squamscott 

River manganese results had a smaller standard deviation than those for the 

Merrimack River. The manganese results and standard deviations for the 

Merrimack River were more consistent than the iron results. 
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Figure 4.15: Merrimack & Squamscott Rivers Mn Equilibration Trend 
The manganese equilibration trends are from laboratory analysis of filtered peeper samples for 
average cell concentrations for depths 63mm to 145mm below the sediment. 

The paired t-tests for the Merrimack and Squamscott Rivers were 

performed at 95% Confidence with a t3,o.o25 0f 3.182. The paired t-test was used 

because comparisons were made at each time period. The comparisons used 

data from figures 4,14 and 4.15. Depths from 63mm to 145mm were compared 

for nitrogen and air purged gases to mitigate the near surface redox metal 



concentration effects. Since the individual depths were compared, the paired t-

test was used. 

Table 4.2: Paired t-tests for Redox Metals Equilibrated Results 

Sediment is from laboratory studies. Preparation purge gas comparisons used data from figures 
4.14 and 4.15. Depths from 63mm to 145mm were compared for nitrogen and air purged gases. 
t3,0.025= 3 .182 

Metal 

Fe 

Mn 

River 

Merrimack 

Squamscott 

Merrimack 

Squamscott 

Week 

2 
3 
4 
5 
2 
3 
4 
5 
2 
3 
4 
5 
2 
3 
4 
5 

Interval 

-237.543 
-63.179 

-65.6636 

-218.309 
-7.97294 
-9.59367 

0.815909 

-1.52908 
-23.7135 
-5.55014 

2.315631 
-26.973 

-0.11039 
-0.10198 
-0.08375 

-0.14483 

15.2709 
0.634952 
-5.54084 

15.47596 
-0.15791 
-0.40514 

2.731446 

8.819598 
2.2398 

4.065706 
10.21243 
2.220524 

-0.00074 
0.026545 

0.012628 
0.183914 

The iron results for the Merrimack River had larger intervals than those for 

the Squamscott. As stated earlier, this was due to the large variation between 

peeper chamber concentrations. Zero was included in the interval for three of the 

four weeks evaluated. Although the interval was large and zero was near the 

positive endpoint, this is an indication there was no difference between the purge 

gas types. Week 4 had a negative interval. This is an indication that air purged 

peepers had a higher concentration. The Squamscott River iron t-test difference 

intervals for weeks 2 & 3 were negative. This suggests air purged peepers have 



higher concentrations than nitrogen. Weeks 4 interval difference included zero, 

while week 5 had a positive interval. 

The manganese results were consistent for both rivers with zero included 

in six of the eight comparisons. Significantly, the last week's difference interval 

included zero for the Merrimack and Squamscott rivers. This is an indication that 

at equilibrium, there is no difference in concentration analysis whether oxygen is 

introduced during preparation or not. 
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Figure 4.16: Cocheco River Iron Equilibration Trends 
The iron equilibration trends are from field analysis of cell concentrations averaged over the entire 
peeper for each data point. Four peepers for each time period were evaluated based on 
preparation purge gas and filter option for sample removal. 

Each point in Figure 4.16 "Cocheco River Iron Equilibration Trends" and 

Figure 4.17 "Cocheco River Manganese Equilibration Trends" are an average of 

all fifteen chambers representing depth from 64mm to 241mm. The depth range 
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was chosen to mitigate the surface effects of the redox metals. Iron concentration 

reached equilibration by week one. The trend is flat with a similar standard 

deviation as those in the laboratory studies. The unfiltered results were 

essentially the same for both purge gas types. 
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Figure 4.17: Cocheco River Manganese Equilibration Trends 
The manganese equilibration trends are from field analysis of cell concentrations averaged over 
the entire peeper for each data point. Four peepers for each time period were evaluated based on 
preparation purge gas and filter option for sample removal. 

Week 1 and 2 manganese concentrations were almost identical for both 

purge gas types and filtering options. At week 3, the unfiltered air purged peeper 

concentration was higher than the unfiltered nitrogen peeper concentration. The 

results were reversed for week 5. The filtered sample concentrations were close 

for both purge gas types throughout the trend period. 
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Table 4.3: Cocheco River Paired t-tests for Redox Metals 

Sediment is from field studies. Preparation purge gas comparisons used data from figures 4.16 
and 4.17. Depths from 63mm to 241mm were compared for nitrogen and air purged gases. 
tl4,O.025= 2 .145 

Metal 

Fe 

Mn 

Removal 
Technique 

Filtered 

Unfiltered 

Filtered 

Unfiltered 

Week 

1 
2 
3 
5 
1 
2 
3 
5 
1 
2 
3 
5 
1 
2 
3 
5 

Interval 

0.904083 
-15.068 

-20.4247 
-13.5333 
-0.69457 
1.387202 
2.929202 
4.702053 
-0.24878 
-0.3191 

-0.52071 
0.283386 
0.162999 
-0.70539 
0.433492 
0.014761 

1.57246 
-4.13166 
-7.50287 
-0.37348 
-0.09553 
4.404815 
10.84217 
17.03358 
0.015225 
0.586707 
0.137876 
1.114444 
0.451861 
-0.11443 
2.524042 
1.165205 

Table 4.3: "Cocheco River Paired t-tests for Redox Metals" are t-tests for 

iron and manganese equilibrated trends. The t-test was performed at 95% 

Confidence with a ti4,o.o25 of 2.145. Depths from 63mm to 241mm were compared 

for nitrogen and purged gas. The filtering removal technique options were also 

included. The paired t-test was used because comparisons were made at each 

time period and to stay consistent with the laboratory experiments. 

The iron concentration difference intervals were small for the Cocheco 

field study as compared to the Merrimack River laboratory experiment. Filter 

samples for iron t-test difference intervals for weeks 2, 3 and 5 was negative for 

air purged peepers. This suggests that air purged peepers had higher 



equilibrated iron concentrations than the filtered nitrogen purged peeper 

samples. The unfiltered t-test difference intervals were positive for those time 

periods indicating nitrogen peepers had higher concentrations. If oxygen was 

present causing iron oxide precipitation, the expected results would be opposite. 

As with all of the sediment types, manganese had smaller difference 

intervals. A small t-test interval is indicates there is little difference between the 

subjects being compared. In the filtered option, there was no apparent difference 

between the purge gas types for weeks 1, 2 and 3. Week 5 had a positive t-test 

difference interval. In the unfiltered option, the last two time periods had a 

positive difference interval. This suggested nitrogen purged peepers had a higher 

manganese concentration. 

The overall results of the redox sensitive metal show that there is no 

difference between the purge gas types. This is an indication that oxygen has 

little affect on peeper preparation or material for redox metals given sufficient 

equilibration time. 

4.2.4 Selected Metal Analysis 

The purpose of this section is to evaluate how oxygen affects heavy metal 

concentration from peeper sampling. The figures and tables on the following 

pages will be used for this evaluation. Pore water samples equilibrated for four or 

five weeks were analyzed for Cadmium, Chromium, Strontium and Zinc. Their 

sample concentrations were compared for nitrogen purged and air purged 

peeper preparation. 
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Figure 4.18: Selected Equilibrated Metal Concentrations 
Charts are equilibrated concentrations of Cd, Cr, Sr & Zn. Cocheco River data is from field 
analysis. Merrimack and Squamscott River data are from laboratory results. Concentrations are 
averages of peeper cells from 1" below the surface to the bottom of the peepers. Each sediment 
analysis shows the purge gas the peepers were prepared with and the filtering option the sample 
was removed with. 



In figure 4.18 "Selected Equilibrated Metal Concentrations", cadmium 

concentrations are greater and there is a larger standard deviation in the 

Merrimack River sediment pore water. In the Cocheco and Merrimack River pore 

water, peepers with air purging during preparation have a higher cadmium 

concentration than those purged with nitrogen. The peepers in the Squamscott 

River are close to equal concentration regardless of the gas purged during 

preparation. 

The equilibrated concentrations for chromium have mixed results for the 

different sediments (figure 4.18). The Squamscott River pore water has the 

highest chromium concentration with nitrogen purged peepers being slightly 

higher that air purged ones. The Cocheco River pore water has air purged 

peepers with slightly higher chromium concentrations (figure 4.18). Chromium 

concentrations in the Merrimack River pore water are similar for the different 

preparation purge gas types. Standard deviations for the Cocheco and 

Squamscott Rivers are in the same range (figure 4.18). Those for the Merrimack 

River are slightly lower. 

Strontium concentrations in the Cocheco River sediment pore water are 

essentially equal for the different sampling categories in that pore water (figure 

4.18). The Cocheco River sediment has the highest concentration as well as the 

largest standard deviations. Strontium concentrations in the Merrimack River 

pore water are similar for each of the sampling categories; each category has a 

low standard deviation (figure 4.18). Squamscott River strontium concentrations 

follow a similar pattern as those in the Merrimack River. 
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Equilibrated Zinc concentrations in the Squamscott River sediment pore 

water are similar for the purge gas and filtering options (figure 4.18). The 

standard deviations in the Squamscott River results are small. Filtered samples 

in the Cocheco and Merrimack Rivers have higher zinc concentrations than 

corresponding unfiltered samples for both preparation purge gas types. The 

standard deviations are also higher in the filter samples (figure 4.18). 

Table 4.4: Independent t-tests for Selected Metals 

Preparation purge gas comparisons are equilibrated concentrations of selected elements, Cd, Cr, 
Sr & Zn. Cocheco River data is from field analysis. Merrimack and Squamscott River data are 
from laboratory results. Concentrations used in the comparison are averages of peeper cells from 
1" below the surface to the bottom of the peepers, df = degree of freedom; tdfpo.o25are from student 
t-test tables 

Metal 

Cd 

Cr 

Sr 

Zn 

Sediment 

Cocheco 

Merrimack 

Squamscott 

Cocheco 

Merrimack 

Squamscott 

Cocheco 

Merrimack 

Squamscott 

Cocheco 

Merrimack 

Squamscott 

Comparison 

Unfiltered 
Filtered 
Unfiltered 
Filtered 
Unfiltered 
Filtered 
Unfiltered 
Filtered 
Unfiltered 
Filtered 
Unfiltered 
Filtered 
Unfiltered 
Filtered 
Unfiltered 
Filtered 
Unfiltered 
Filtered 
Unfiltered 
Filtered 
Unfiltered 
Filtered 
Unfiltered 
Filtered 

df 

50 
50 
38 
37 
18 
28 
50 
50 
38 
37 
18 
28 
50 
50 
38 
37 
18 
28 
50 
50 
38 
37 
18 
28 

t 

2.009 
2.009 
2.024 
2.026 
2.101 
2.048 
2.009 
2.009 
2.024 
2.026 
2.101 
2.048 
2.009 
2.009 
2.024 
2.026 
2.101 
2.048 
2.009 
2.009 
2.024 
2.026 
2.101 
2.048 

Interval (ppm) 

0.0003 
-0.0001 
-0.0003 
-0.0006 
0.0002 
0.0007 

-0.0001 
-0.0001 
-0.0001 
0.0001 
0.0021 
0.0115 
0.4928 
0.4315 
0.0007 

-0.0154 
0.0985 
0.2610 
0.0017 
0.0487 
0.0615 
0.1173 
0.0379 
0.0594 

-0.0004 
-0.0007 
-0.0018 
-0.0029 
-0.0002 
-0.0005 
-0.0027 
-0.0040 
-0.0009 
-0.0010 
-0.0005 
-0.0059 
-0.3010 
-0.3155 
-0.0589 
-0.1075 
0.0144 

-0.1537 
-0.0009 
-0.0605 
-0.0195 
-0.0745 
-0.0402 
-0.0623 
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The Independent t-tests in table 4.4 compares equilibrated concentrations 

preparation purge types, nitrogen vs. air, for the selected metals. Concentrations 

for metals, Cd, Cr, Sr & Zn, are averages of peeper cells from 1" below the 

surface to the bottom of the peepers. Cocheco River data is from field analysis. 

Merrimack and Squamscott River data are from laboratory results. It should be 

noted that a negative difference interval indicates air purged peepers have the 

higher concentration. A positive difference suggests nitrogen purged peepers 

have the higher concentration. If zero in included in the t-test interval difference 

then the evidence indicates there is no difference. 

The cadmium unfiltered independent t-test interval differences for the 

Cocheco River and both filtering options for the Squamscott River include zero in 

the interval (table 4.4). This indicates there is no cadmium concentration 

differences between the preparation purge gas types. The Merrimack River and 

filtered samples for the Cocheco River have a negative interval for cadmium 

concentration (table 4.4). A negative interval suggests peepers with air purged 

have a higher concentration than those with nitrogen. 

The independent t-test for chromium concentration difference intervals for 

the Squamscott River include zero (table 4.4). The difference interval for 

unfiltered peepers in the Merrimack River sediment include zero while filtered 

results have a negative interval (table 4.4). For the Cocheco River, chromium 

concentration difference intervals for both filtering options are negative (table 

4.4). 
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The independent t-tests for strontium, an alkaline earth metal, are mixed. 

Zero is included in the concentration difference in both filter options for the 

Cocheco River sediment pore water (table 4.4). The Merrimack River 

concentration difference for unfiltered peepers includes zero while the filtered 

peeper samples have a negative difference interval (table 4.4). The Squamscott 

River unfiltered peepers have a positive t-test difference interval. Filtered 

peepers from the Squamscott River have zero in the difference interval. 

Zero is included in the independent t-test difference interval for zinc 

concentration for all the filter options and sediment pore water (table 4.4). This 

suggests there is no difference attributed to oxygen during sediment sampling for 

zinc concentrations with peepers. 

Cadmium concentration depth profiles, shown in figure 4.19, are from 

filtered samples of equilibrated laboratory peepers removed from the Merrimack 

and Squamscott Rivers. The thin bars are individual peeper while the thick bar is 

the average of those peepers. Each depth represents two adjacent peeper cells. 

The exception is depth -146, which is the last three cells of the peepers. The 

depth profiles of cadmium in the Merrimack and Squamscott Rivers follow a 

similar trend as the iron profiles with cadmium concentrations low near the 

surface and increasing with depth. Peeper 8-1 PSA for air purged Squamscott 

River sediment is significantly greater than the other peepers at depths of -

89mm, -114mm and -146mm. This peeper is responsible for the large standard 

deviations at those depths. 
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Figure 4.19: Merrimack & Squamscott Rivers Depth Profile for Cd 
Cadmium concentration depth profiles are from filtered samples for equilibrated peepers removed 
from the Merrimack & Squamscott Rivers laboratory sediment. The thin bars are individual 
peeper while the thick bar is the average of those peepers. Each depth represents two adjacent 
peeper cells. The exception is depth -146, which is the last three cells of the peepers. 
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Figure 4.20: Merrimack and Squamscott Rivers Depth Profile for Cr 
Chromium concentration depth profiles are from equilibrated peepers removed from the 
Merrimack and Squamscott Rivers laboratory sediment. The thin bars are individual peeper while 
the thick bar is the average of those peepers. Each depth represents two adjacent peeper cells. 
The exception is depth -146, which is the last three cells of the peepers. 



Chromium concentration depth profiles, shown in figure 4.20, are from 

filtered samples of equilibrated laboratory peepers removed from the Merrimack 

and Squamscott Rivers. Chromium concentration depth profiles follow the 

expected trend as those seen in iron. The chromium concentration in Squamscott 

River sediment pore water is greater than in the Merrimack River. Both Rivers 

have a similar trend and concentration level for air and nitrogen purged peepers 

(figure 4.20). 

Strontium concentration depth profiles, shown in figure 4.21, are from 

filtered samples of equilibrated laboratory peepers removed from the Merrimack 

and Squamscott Rivers. Strontium concentrations in the Merrimack River follow 

the expect trend of increasing concentration with increasing depth. Squamscott 

River concentrations are consistent throughout the depth profile, including 

strontium concentration is the river water. There is a similar depth profile for 

Strontium concentration air and nitrogen preparation purged peepers in both 

sediments. The peepers at each depth for both sediments and purge gas types 

have consistent concentration. As a result, their standard deviations are small 

(figure 4.21). 

Zinc concentration depth profiles, shown in figure 4.22, are from filtered 

samples of equilibrated laboratory peepers removed from the Merrimack and 

Squamscott Rivers. There is a similar trend for purge gas types, air and nitrogen, 

in both sediments. The depth profile for the sediments is relatively consistent 

from the river water to the bottom of the peepers. Data from laboratory 
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experiment #10, peepers 10-3PMN and 10-6PMA, have higher values than those 

from experiment #8 (figure 4.22). 
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Figure 4.21: Merrimack and Squamscott Rivers Depth Profile for Sr 
Strontium concentration depth profiles are from equilibrated peepers removed from the 
Merrimack and Squamscott Rivers laboratory sediment. The thin bars are individual peeper while 
the thick bar is the average of those peepers. Each depth represents two adjacent peeper cells. 
The exception is depth -146, which is the last three cells of the peepers. 
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Figure 4.22: Merrimack and Squamscott Rivers Depth Profile for Zn 
Zinc concentration depth profiles are from equilibrated peepers removed from the Merrimack and 
Squamscott Rivers laboratory sediment. The thin bars are individual peeper while the thick bar is 
the average of those peepers. Each depth represents two adjacent peeper cells. The exception is 
depth -146, which is the last three cells of the peepers. 
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Figure 4.23: Cocheco River Depth Profile for Cd & Cr 
Cadmium and chromium equilibrated concentration depth profiles for Cocheco River sediment 
pore water field studies. Fifteen chambers from peepers 9-1FC* correspond to depths 25mm to 
152mm. Fifteen chambers from peepers 1-60XY5* correspond to depths -64mm to -241mm. 
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Figure 4.24: Cocheco River Depth Profile for Sr & Zn 
Strontium and zinc equilibrated concentration depth profiles for Cocheco River sediment pore 
water field studies. Fifteen chambers from peepers 9-1FC* correspond to depths 25mm to -
152mm. Fifteen chambers from peepers 1-60XY5* correspond to depths -64mm to -241mm. 



Cadmium concentration depth profiles, shown in figure 4.23, are from 

filtered samples of equilibrated field peepers removed from the Cocheco River. 

There is very little cadmium in the top portions of the sediment and in the river 

water. Peepers from the 1-OXY study have a higher concentration than those 

from the 9-1FC study. Peepers with air purged during preparation have a larger 

cadmium concentration than those with nitrogen purging (figure 4.23). 

Chromium concentration depth profiles, shown in figure 4.23, are from 

filtered samples of equilibrated field peepers removed from the Cocheco River. 

There is a lower concentration of chromium in the river water than in the 

sediment pore water. Peeper purged with air during preparation have a high 

concentration than those purged with nitrogen in depths -25mm to -230mm. 

Depths from -216mm to -241mm have chromium concentrations that are similar 

for both air and nitrogen purged peepers (figure 4.23). 

Strontium concentration depth profiles, shown in figure 4.24, are from 

filtered samples of equilibrated field peepers removed from the Cocheco River. 

Peepers from the 1-OXY study have a higher concentration than those from the 

9-1 FC study. Strontium concentrations in each peeper are consistent for all 

depths or chambers (figure 4.24). In each study, there is no difference between 

air and nitrogen purged peepers. 

Zinc concentration depth profiles, shown in figure 4.24, are from filtered 

samples of equilibrated field peepers removed from the Cocheco River. There is 

very little zinc in the river water. Similar to strontium, zinc concentrations are 

consistent between individual peeper chambers and purge gas type. 
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Figure 4.25: Selected Metal Trends 
Cocheco River data is from field analysis. Merrimack and Squamscott River data is from 
laboratory analysis. Metal concentrations for each sample date are averages of peeper cells from 
1" below the surface to the bottom of the peepers. 



Equilibration trends for selected metals are shown in figures 4.25 and 

4.26. The concentrations for each sample period are averages of peeper cells 

from 1" below the surface to the bottom of the peepers. Each metal has trends 

for peepers purged with nitrogen and air during preparation. 

Cadmium laboratory equilibration trends for filtered peeper samples in 

Merrimack River sediment can be seen in figure 4.25. Peepers purged with air 

during preparation have higher concentration than those purged with nitrogen for 

each time period. Cadmium concentration is still rising for air purged peepers at 

the five week time period. For nitrogen purged peepers, the concentration at five 

weeks is lower than at four weeks (figure 4.25). However with only one time 

period of reduce concentration, equilibration can not be confirmed. 

Chromium laboratory equilibration trends for filtered peeper samples in 

Merrimack River sediment can be seen in figure 4.25. The trends for peepers 

purged with nitrogen and air converged at week four. Nitrogen purged peeper 

sample concentrations were flat between four and five, while air purged peeper 

concentration went down at week five (figure 4.25). Again with only one time 

period of reduce or flat concentration levels, equilibration can not be confirmed. 

Strontium field equilibration trends for filtered peeper samples in Cocheco 

River sediment can be seen in figure 4.25. The trends for peepers purged with 

nitrogen and air during preparation were similar for all time periods. 

Concentration levels were rising from week three to week five. Equilibration could 

not be verified for strontium in the Cocheco River during the study period. 
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Figure 4.26: Zn Trends in Selected Sediments 
Cocheco River data is from field analysis. Merrimack and Squamscott River data is from 
laboratory analysis. Zinc concentrations for each sample date are averages of peeper cells from 
1" below the surface to the bottom of the peepers. 

Zinc equilibration trends in the laboratory study for the Merrimack River 

and the field study for the Cocheco River sediments, for filtered peeper samples, 

can be seen in figure 4.26. Trends for zinc concentrations in the Merrimack River 

had a similar pattern for both purge gas types. Concentration increased from 

week one to week two then decreased to week five. Nitrogen purged peepers in 
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Merrimack River sediment had a higher concentration for all of the time periods. 

In Cocheco River Sediment, zinc concentrations were relatively flat for the entire 

study. Nitrogen purged peepers had higher concentrations than air purge 

peepers for weeks 1, 2 and 5. Equilibration was reached in the Cocheco River by 

week one and by week three in the Merrimack River. 

Overall the oxygen effects on the selected metals were negligible. Most of 

the difference intervals for the independent t-tests included zero. The majority of 

those that did not were negative, which indicated air purged peepers had a 

higher concentration. The results were similar to those of the redox sensitive 

metals. The depth profiles for the selected metals were also similar to those for 

the redox sensitive metals. Peepers reached equilibration between week four 

and six. 

4.2.5 Oxygen Effect on Anion Concentration 

Anion analysis was performed on Merrimack and Squamscott River 

sediment pore water. In the laboratory studies, anion data was collected for all 

the peepers. Two peepers were analyzed at each field location close to where 

the sediment was collected. One was prepared with nitrogen purged gas and one 

with air purged gas. The field peeper samples were all filtered. 

Part of the theory of this thesis is that oxygen effects will be mitigated by 

microbial activity. Microbes will consume any oxygen introduced into the 

sediment by the peepers, which will cause the redox conditions to return to their 

original state. Microbes use nitrate as a terminal electron acceptor by converting 

nitrate to nitrite. Therefore, the relationship between nitrite and nitrate was 
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investigated. Microbial activity should cause the ratio of nitrite to nitrate plus 

nitrite to increase over time. Chloride and sulfate concentrations were also 

measured. Equilibrated peeper concentrations can be seen in Figure 4.27: 

"Equilibrated Anion Concentrations". 
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Figure 4.27: Equilibrated Anion Concentrations 
Equilibrated laboratory and field peeper sample concentrations for the Merrimack and 
Squamscott Rivers. Concentrations are averages of peeper cells from 1" below the surface to the 
bottom of the peepers. Chloride and sulfate were analyzed on an ion chromatograph. Nitrite and 
nitrate + nitrite were analyzed on a colorimeter. 
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The Chloride concentrations in the Merrimack River sediment were of 

similar magnitude for field and laboratory experiments (figure 4.27). Field 

samples from the Squamscott River were than the laboratory samples. In both 

sediments, nitrogen and air purged peepers in each category had similar 

concentrations. The independent t-tests for the Merrimack River sediment 

included zero in the difference interval for all the options (table 4.5). The t-test on 

field sediment of the Squamscott River also included zero in the difference 

interval. Laboratory sediment from the Squamscott River had a positive t-test 

interval for both filtering options. It is expected and confirmed, by figure 4.27, that 

the chloride ion is not influenced by oxygen introduced into the sediment. 

Sulfate concentrations are greater for filtered field peepers in the 

Merrimack River than for the filtered laboratory peepers (figure 4.27). In the 

Squamscott River, field samples have a greater sulfate concentration the filtered 

or unfiltered laboratory samples (figure 4.27). There are mixed results, in both 

river sediments, for the comparison between nitrogen and air purged peepers. 

For example in Squamscott River, nitrogen purged peeper have a higher sulfate 

concentration than air purge peepers in the field study while air purged peepers 

have the higher concentration in laboratory study (figure 4.27). The independent 

t-test interval difference includes zero in all but Merrimack River field sediments 

(table 4.5). A zero difference interval indicates that oxygen introduced into the 

sediment has no effect on sulfate concentration. 
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Table 4.5: Anion Independent t-tests 

Preparation purge gas comparisons are equilibrated concentrations of selected anions, CI", S04
2", 

N02" & N03" + N02". Merrimack and Squamscott River data are from laboratory and field results. 
Concentrations used in the comparison are averages of peeper cells from 1" below the surface to 
the bottom of the peepers, df = degree of freedom; ̂ ,0.025 are from student t-test tables 
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Nitrogen purged field peepers had the highest nitrite concentrations while 

the air purged field peepers had the lowest (figure 4.27). Nitrite concentrations for 
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filtered laboratory peeper samples were greater than the unfiltered samples. In 

the Squamscott River, the filtered sample concentrations were greater than 

unfiltered samples for all categories. Nitrogen and air purged peepers had mixed 

results. Unfiltered nitrogen peeper samples had a greater nitrate concentration 

than the unfiltered air peepers. However, the filtered samples of air purged 

peepers were greater than the nitrogen purged peepers (figure 2.27). Except for 

the field study in the Merrimack River, all the independent t-test intervals for 

sediment comparison of purge gas type included zero (table 4.5). 

Nitrate + nitrite concentrations in the Merrimack River field study were 

greater than those in the laboratory study (figure 4.27). Filtered sample 

concentrations were larger than the unfiltered on in the Merrimack River 

laboratory. The Merrimack River laboratory filtered sample removal option had 

higher nitrate + nitrite concentrations for nitrogen purged peepers than air purged 

peepers. The preparation gas purge types had similar concentrations for 

Merrimack River unfiltered samples (figure 4.27). In the Squamscott River 

sediment, filter samples had greater nitrate + nitrite concentrations than unfiltered 

for all purge gas types (figure 4.27). Nitrogen and air preparation purge samples 

had similar concentrations when compared by filtering option (figure 4.27). 

Except for the unfiltered laboratory study in the Squamscott River, all the 

independent t-test intervals for sediment comparison of purge gas type included 

zero (table 4.5). It should be noted that a difference interval that include zero 

suggests oxygen introduced into the sediment by the peepers has no effect on 

nitrate or nitrite concentration. 
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Figure 4.28: Merrimack River Chloride Anion Depth Profile 
Chloride concentration depth profiles of filtered peeper samples removed from the Merrimack 
River sediment in laboratory and field studies. The peepers used for the chart on the left were 
purged with nitrogen during preparation. The peepers for the chart on the right were purged with 
air. The thin bars on the laboratory sediment are individual peeper while the thick bar is the 
average of those peepers. Each depth represents two adjacent peeper cells. The exception is 
depth -146, which is the last three cells of the peepers. 
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Figure 4.29: Squamscott River Chloride Anion Depth Profile 
Chloride concentration depth profiles of filtered peeper samples removed from the Squamscott 
River sediment in laboratory and field studies. The peepers used for the chart on the left were 
purged with nitrogen during preparation. The peepers for the chart on the right were purged with 
air. The thin bars on the laboratory sediment are individual peeper while the thick bar is the 
average of those peepers. Each depth represents two adjacent peeper cells. The exception is 
depth -146, which is the last three cells of the peepers. 



The Merrimack River depth profile for chloride in laboratory studies shows 

a higher concentration in the river water than in the pore water for both purge gas 

types (figure 4.28). Chloride concentration in the Merrimack River laboratory 

study is gradually reduced to approximate 50 mg CI7L The field results show a 

consistent concentration throughout the depth profile at 50 mg CI7L (figure 4.28). 

Squamscott River chloride concentrations are consistent throughout the depth 

profiles for both purges types in both field and laboratory studies (figure 4.29). 

However, the field results are much higher than those for laboratory studies. 

The sulfate anion concentrations in the Merrimack and Squamscott Rivers 

laboratory study were higher in the river water and upper sediment (figure 4.30 & 

4.31). There was very little sulfate below -33mm. The exception was that the air 

purged Squamscott River peeper had a high concentration at -146mm. The 

Merrimack River air purged field peeper had a consistent concentration to -89mm 

at near 4 mg S/L (figure 4.30). The field nitrogen peeper for the Merrimack River 

had a broken membrane so the results were suspect. The Squamscott River field 

peepers had sulfate to a depth of -89mm. 

It should be noted that sulfide-rich sediment can be affected by air 

introduction by causing metal sulfides to dissolve. Although, the sediment was 

not analyzed for sulfide, the Squamscott River sediment constituents were used 

in the computer modeling program Visual Minteq. Each constituent concentration 

(from the laboratory analysis), temperature, pH and atmospheric pressure was 

entered into the program. The model resulted in a very low sulfide partial 

pressure, 9.47 x 10~23 and no sulfide in the sediment. There also was no tell-tale 
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scent of hydrogen sulfide. The concentration detectable by humans is 

0.0047ppm. This is an indication that the sediment is not sulfide rich. 
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Figure 4.30: Merrimack River Sulfate Anion Depth Profile Figure 
Sulfate concentration depth profiles of filtered peeper samples removed from the Merrimack River 
sediment in laboratory and field studies. The peepers used for the chart on the left were purged 
with nitrogen during preparation. The peepers for the chart on the right were purged with air. The 
thin bars on the laboratory sediment are individual peeper while the thick bar is the average of 
those peepers. Each depth represents two adjacent peeper cells. The exception is depth -146, 
which is the last three cells of the peepers. 
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Figure 4.31: Squamscott River Sulfate Anion Depth Profile 
Sulfate concentration depth profiles of filtered peeper samples removed from the Squamscott 
River sediment in laboratory and field studies. The peepers used for the chart on the left were 
purged with nitrogen during preparation. The peepers for the chart on the right were purged with 
air. The thin bars on the laboratory sediment are individual peeper while the thick bar is the 
average of those peepers. Each depth represents two adjacent peeper cells. The exception is 
depth -146, which is the last three cells of the peepers. 
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Figure 4.32: Merrimack River Nitrate + Nitrite Depth 
Nitrate + nitrite concentration depth profiles of filtered peeper samples removed from the 
Merrimack River sediment in laboratory and field studies. The peepers used for the chart on the 
left were purged with nitrogen during preparation. The peepers for the chart on the right were 
purged with air. The thin bars on the laboratory sediment are individual peeper while the thick bar 
is the average of those peepers. Each depth represents two adjacent peeper cells. The exception 
is depth -146, which is the last three cells of the peepers. 
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Figure 4.33: Merrimack River Nitrite Depth Profile 
Nitrite concentration depth profiles of filtered peeper samples removed from the Merrimack River 
sediment in laboratory and field studies. The peepers used for the chart on the left were purged 
with nitrogen during preparation. The peepers for the chart on the right were purged with air. The 
thin bars on the laboratory sediment are individual peeper while the thick bar is the average of 
those peepers. Each depth represents two adjacent peeper cells. The exception is depth -146, 
which is the last three cells of the peepers. 
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Nitrate plus nitrite and nitrite depth profiles for filtered peepers in the 

Merrimack River can be seen in figures 4.32 and 4.33, respectively. Combined 

nitrate and nitrite concentrations are highest in the river water for the laboratory 

study at 5.9 mg N/L and 7.7 mg N/L, nitrogen and air purged peepers 

respectively. Nitrite alone also has the highest concentration in the river water. In 

the field study for nitrate plus nitrite, the highest concentration is at -38mm (figure 

4.32). The field study for the nitrogen purged peeper has no nitrite in any of the 

chambers. A broken membrane in the top two chambers precludes examination 

of the river water nitrite concentration. The air purged peepers has nitrite 

concentrations between 0.03 mg N/L and 0.065 mg N/L throughout the entire 

peeper gradually increasing with depth (figure 4.33). The ratio for nitrite to nitrate 

plus nitrite, in the laboratory study on Merrimack River sediment, is highest at 

depths -38mm (« 0.35) and -63mm (« 0.24) for both purged gas types. The ratio 

is lowest in the river water and top chamber. 

The Squamscott River laboratory studies show the highest nitrate plus 

nitrite concentrations in the river water and first chamber for both purge gas types 

(figure 4.34). The combined nitrate and nitrite concentrations in the field peepers 

are consistent throughout the whole peeper for both preparation purge gas types. 

However, the concentrations are much lower than the laboratory studies. 

Squamscott River nitrite concentrations in the laboratory studies are highest in 

the river water and top chamber (figure 4.35). The field study shows very little 

nitrite in the peepers. The ratio for nitrite to nitrate plus nitrite for Squamscott 

River laboratory pore water is greatest after the depth of -38mm. 
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Figure 4.34: Squamscott River Nitrate + Nitrite Depth Profile 
Nitrate + nitrite concentration depth profiles of filtered peeper samples removed from the 
Squamscott River sediment in laboratory and field studies. The peepers used for the chart on the 
left were purged with nitrogen during preparation. The peepers for the chart on the right were 
purged with air. The thin bars on the laboratory sediment are individual peeper while the thick bar 
is the average of those peepers. Each depth represents two adjacent peeper cells. The exception 
is depth -146, which is the last three cells of the peepers. 
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Figure 4.35: Squamscott River Nitrite Depth Profile 
Nitrite concentration depth profiles of filtered peeper samples removed from the Squamscott 
River sediment in laboratory and field studies. The peepers used for the chart on the left were 
purged with nitrogen during preparation. The peepers for the chart on the right were purged with 
air. The thin bars on the laboratory sediment are individual peeper while the thick bar is the 
average of those peepers. Each depth represents two adjacent peeper cells. The exception is 
depth -146, which is the last three cells of the peepers. 

113 



O) 

.E, 
c g *-• 
CO 

c 

8 
c 
o 
O 

0.8 -

0.6 -

0.4 -

0.2 -

0.0 -

M errim ack River 
W e e k 2 N 2 cone = 2 36ppm 

Std d< v = 1.72 

O 

O 

o 

5 

• N2 Purged 
O Air Purged 

o 

i 
1.0 

1 2 3 

Squamscot t River 

=J 0.8 
Z 
o> 
£ 0.6 H 
c g 

• ^ 
03 
i= 0.4 c a> 
o 
c 
° 0 2 
O 

0.0 

5 

• N2 Purged 
O Air Purged 

Weeks 

Figure 4.36: Sediment Pore Water Nitrite + Nitrate Equilibration Trend 
The nitrite plus nitrate equilibration trends are from laboratory analysis of filtered peeper samples 
for average cell concentrations for depths 63mm to 145mm below the sediment. Analysis was 
performed with a colorimeter. 

Data used for the trends in figures 4.36, 4.37 and 4.38 are from filtered 

peeper samples for average cell concentrations for depths 63mm to 145mm 

below the top of sediment. The nitrite plus nitrate equilibration trend for filtered 

peeper samples from the Merrimack and Squamscott Rivers can be seen in 

figure 4.36. In the Squamscott River, the trends for nitrogen and air purged 

peeper converge at week 3. They remain very close, slightly trending down, 

thereafter. The Merrimack River trends for the purge gas type converge at week 
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4. For the Merrimack River, nitrogen purged peeper samples increase from week 

4 to 5 (figure 4.36). Nitrite plus nitrate concentrations remain relatively from week 

4 to 5. The Squamscott River peepers and air purged Merrimack River peepers 

reach equilibration by week five. The upward trend at week five for Merrimack 

River nitrogen purged peepers does not allow for confirmation that equilibrium 

has been reached. 
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Figure 4.37: Sediment Pore Water Nitrite Equilibration Trend 
The nitrate equilibration trends are from laboratory analysis of filtered peeper samples for 
average cell concentrations for depths 63mm to 145mm below the sediment. Analysis was 
performed with a colorimeter. 

115 



The nitrite concentrations for both purge gas types for the Merrimack River 

follow a similar downward trend, converging at week five (figure 4.37). Nitrite 

concentrations in the Squamscott River follow a similar downward trend as those 

in the Merrimack River. The Squamscott River peepers appear to reach 

equilibrium between weeks 4 and 5. In the Merrimack River, equilibrium can not 

be verified. 
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Figure 4.38: Sediment Nitrite/Nitrite + Nitrate Ratio 
The nitrite/nitrate plus nitrate trends are from laboratory analysis of filtered peeper samples for 
average cell concentrations for depths 63mm to 145mm below the sediment. Analysis was 
performed with a colorimeter. 
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It was expected that as microbes converted nitrate to nitrite, the ratio of 

nitrite to nitrate plus nitrite would trend upward. The nitrite to nitrate plus nitrite 

equilibration trend for filtered samples from the Merrimack and Squamscott 

Rivers can be seen in figure 4.38. Although the data is erratic, bouncing up and 

down, it is relatively flat. There is no appreciable difference in the purge gas 

types. As a result, the ratio of nitrite to nitrate plus nitrite is not a good indicator of 

microbial activity. 

4.2.6 Oxygen Effects On Peeper Material 

Peeper material was identified as a primary source of artifacts by 

Carignan. He stated that oxygen leaching out of the plastic caused the redox 

sensitive metals to precipitate within the peeper chambers. His conclusions were 

based on an orange tint to polycarbonate peepers. The vertical peepers in this 

thesis were all made from polycarbonate. This section uses visual analysis of 

peepers, that were just removed from the sediment, to indicate oxygen effects 

from peeper material. 

Carignan noted that an orange substance, identified as ferric oxide, was 

present on all of the peepers made from polycarbonate. Polycarbonate did have 

a high dissolve oxygen content (3.7 O2 %VolA/ol) in his studies but its half live 

was relatively fast (1.6 days). After five weeks or thirty-five days in anaerobic 

sediment, the dissolved oxygen leaching from the peepers should be negligible. 

If oxygen leaching from peeper material is causing artifacts, those effects should 

be greater in peepers removed early in the equilibration process and seen in all 

sediment types. 
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Figure 4.39: Equilibrated Peeper Backs Prior to Sample Removal 
Cocheco River field and Merrimack and Squamscott Rivers laboratory peepers removed from the 
sediment after four weeks. Peepers were cleaned prior to the pictures being taken. Orange tint in 
the Cocheco and Merrimack River peepers is iron oxide. The brown tint in the Squamscott River 
peepers is fine sediment particles that passed through the membrane. 
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In Figure 4.39 "Peepers Prior to Sample Removal", the orange color can 

be seen distinctly in peepers from the Cocheco and Merrimack Rivers, 

regardless of the type of purge gas. The Cocheco River peepers are part of the 

field study while the Merrimack and Squamscott River peepers are from the 

laboratory studies. However, the peepers from the Squamscott Rivers did not 

show any orange tint. The Squamscott River peepers did show a dark brown 

substance that appeared to be from the very fine sediment particles leaching 

across the membrane. Although not shown, vertical peeper used in Cottonwood 

Bay did not show any evidence of the orange tint. Vertical peepers used in the 

Anacostia River had only faint orange tint in isolated spots on the peepers. With 

the exception of the nitrogen purged Merrimack River peeper, the top two 

chambers in the peepers did not show any orange color. These were the 

chambers located in the water body above the sediment. The peepers in Figure 

4.39 were all post-equilibration. 
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Figure 4.40: Merrimack & Squamscott Rivers Peeper Faces 
Merrimack and Squamscott Rivers laboratory peepers removed from the sediment after four 
weeks. Peepers were cleaned prior to the pictures being taken. Orange tint on the Merrimack 
River peeper is iron oxide. The brown tint in the Squamscott River peeper is fine sediment 
particles. 
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Carignan also commented on that the orange color was also observed on 

the membranes. The peepers depicted n Figure 4.40 "Merrimack & Squamscott 

River Peeper Faces" are the faces of the air purged peepers from the Merrimack 

and Squamscott Rives seen in figure 4.39. The top of the peepers is to the left. 

The first two chambers of each peeper were in the water body above the 

sediment. The membrane covering those chambers and the next two in the 

Merrimack River peeper showed a hint of orange. The rest of the membrane was 

white. The face of the Cocheco River peeper in Figure 4.39, not shown, had a 

faint orange color in the membrane in the water body. The bottom chambers of 

that peeper were white when taken out of the sediment. The faint orange color in 

those chambers was attributed to the picture being taken an hour after the 

peeper was removed from the sediment. 

Figure 4.41 is a series of pictures of the faces of Cocheco River peeper 

faces. The peepers were removed as part of the equilibration trend study. Each 

was cleaned upon removal from the sediment and the pictures were immediately 

taken thereafter. Since the peeper material will have the most dissolved oxygen 

in the initial part of equilibration, the orange tint should be more visible early in 

the equilibration process. Week one peepers had no color at all. Week two have 

a fine tint while weeks three and five had a significant orange color. 
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Figure 4.41: Cocheco River Weekly Trend Peeper Faces 
Cocheco River field peepers were removed on the indicated week and cleaned prior to pictures 
being taken. The orange tint on the peepers becomes darker the longer the peeper is kept in the 
sediment. 

The weekly trend pictures of the Merrimack River peepers are seen in 

Figure 4.42. These peepers are from the laboratory study. They were cleaned 

and the pictures were taken immediately after the peepers were removed from 

the sediment. The trend exhibits the same phenomena as that in the Cocheco 

River. Though, the Merrimack River peepers have a darker orange tint earlier. 
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Figure 4.42: Merrimack River Weekly Trend Peeper Faces 
Merrimack River laboratory peepers were removed on the indicated week and cleaned prior to 
pictures being taken. The orange tint on the peepers becomes darker the longer the peeper is 
kept in the sediment. 

If oxygen leaching out of the peeper material was causing sampling 

artifacts then the affects should be seen in all the sediment types. The fact that 

the Squamscott River sediment did not show any orange color indicates oxygen 

effects are more dependent on sediment type than peeper material. The low iron 

concentration, between 8ppm and 9ppm, in the Squamscott River may be a 
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reason for not showing the color. However the Cocheco River iron concentration, 

between 8ppm and 18ppm, was only slightly higher and it did show orange tint. 

In both the Cocheco and Merrimack Rivers, the orange tint became darker the 

longer the peeper were in the sediment. 

4.3 Evaluation of Sample Removal Techniques 

4.3.1 Introduction 

The removal techniques evaluated in this section are filtering options and 

sample removal using a nitrogen purged glove box. Filtering is used to determine 

if any metal precipitation within the peeper chambers affects sample 

concentration results. If oxygen is causing metals to precipitate within the peeper 

chambers then filtered samples should have lower concentrations than unfiltered 

ones. The glove box comparison is used to determine if atmospheric oxygen has 

any effects during sample removal. If atmospheric oxygen is effecting sample 

concentration then samples removed within the glove box should have higher 

metal concentrations 

4.3.2 Filter Option Comparison 

Filtering was competed using a syringe filter. Graphs depicting 

filtering/non-filtering comparisons are seen in figures 4.9, 4.18 and 4.27 on pages 

65, 81 and 98, respectively. These graphs are of equilibrated peepers that are 

prepared with air or nitrogen purging. 

In figure 4.9, "Overall Iron & Manganese Concentrations", pore water iron 

and manganese concentrations are compared. Filtered samples have a higher 
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iron concentration than unfiltered in the Merrimack River while unfiltered samples 

have higher iron concentration in the Cocheco River iron. In the Squamscott 

River, iron concentrations are equal for both filtered and unfiltered samples. 

Manganese concentrations in the three rivers have the same pattern as iron 

concentrations (figure 4.9). 

Filtering options are examined in figure 4.18, "Selected Equilibrated Metal 

Concentrations', for cadmium, chromium, strontium and zinc. Cadmium 

concentrations in the Cocheco and Squamscott Rivers are essentially equal for 

both filter and unfiltered samples. In the Merrimack River, filtered samples have a 

greater concentration than unfiltered samples. Chromium and strontium 

concentration are very close for filtered and unfiltered samples from all three 

rivers examined. Zinc concentrations are much greater in filtered samples than 

unfiltered ones in the Cocheco and Merrimack Rivers while they are equal in the 

Squamscott River (figure 4.18). 

Anion concentrations are examined in figure 4.27, "Equilibrated Anion 

Concentrations. Chloride concentrations are equal for both filter option in the 

Merrimack and Squamscott Rivers. Sulfate concentrations in nitrogen purged 

peeper are higher for unfiltered Merrimack River samples but lower for unfiltered 

samples in the Squamscott River. Nitrite and nitrate plus nitrite filtered samples 

are higher than unfiltered ones in both the Merrimack and Squamscott Rivers 

(figure 4.27). 
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Table 4.6: Filter Option Independent t-tests 
Filter and unfiltered peeper samples are compared in the t-tests. Filter option comparisons are of 
equilibrated concentrations of elements, Fe, Mn, Cd, Cr, Sr & Zn. Cocheco River data is from field 
analysis. Merrimack and Squamscott River data are from laboratory results. Concentrations used 
in the comparison are averages of peeper cells from 1" below the surface to the bottom of the 
peepers, df = degree of freedom; ̂ ,0.025 are from student t-test tables. 

Metal 

Fe 

Mn 

Cd 

Cr 

Sr 

Zn 

Sediment 

Cocheco 

Merrimack 

Squamscott 

Cocheco 

Merrimack 

Squamscott 

Cocheco 

Merrimack 

Squamscott 

Cocheco 

Merrimack 

Squamscott 

Cocheco 

Merrimack 

Squamscott 

Cocheco 

Merrimack 

Squamscott 

Comparison 

N2 

Air 
N2 

Air 
N2 

Air 
N2 

Air 
N2 

Air 
N2 

Air 
N2 

Air 
N2 

Air 
N2 

Air 
N2 

Air 
N2 

Air 
N2 

Air 
N2 

Air 
N2 

Air 
N2 

Air 
N2 

Air 
N2 

Air 
N2 

Air 

df 

50 
50 
37 
38 
24 
24 
50 
50 
37 
38 
24 
24 
50 
50 
37 
38 
24 
24 
50 
50 
37 
38 
24 
24 
50 
50 
37 
38 
24 
24 
50 
50 
37 
38 
24 
24 

t 

2.009 
2.009 
2.026 
2.024 
2.064 
2.064 
2.009 
2.009 
2.026 
2.024 
2.064 
2.064 
2.009 
2.009 
2.026 
2.024 
2.064 
2.064 
2.009 
2.009 
2.026 
2.024 
2.064 
2.064 
2.009 
2.009 
2.026 
2.024 
2.064 
2.064 
2.009 
2.009 
2.026 
2.024 
2.064 
2.064 

Interval (ppm) 

-4.6578 
3.7244 

30.9375 
46.4664 

6.1764 
46.4664 

0.3889 
0.7797 
4.9040 
9.7091 
0.1209 
0.2851 

-0.0003 
0.0002 
0.0014 
0.0021 
0.0004 
0.0008 
0.0012 
0.0018 
0.0005 
0.0006 
0.0096 
0.0078 
0.2918 
0.2929 
0.0490 
0.0772 
0.1265 
0.2267 
0.2758 
0.3130 
0.1976 
0.1985 
0.0559 
0.0590 

-13.9223 
-10.2572 
-14.4947 
-0.7177 
-5.2417 
-0.7177 
-3.2785 
-2.2571 
-1.5188 
2.3205 

-0.1525 
-0.1852 
-0.0008 
-0.0006 
-0.0006 
0.0001 

-0.0004 
-0.0006 
-0.0022 
-0.0014 
-0.0003 
-0.0005 
-0.0065 
-0.0071 
-0.5149 
-0.4402 
-0.0323 
0.0043 

-0.1408 
-0.2245 
0.2359 
0.2113 
0.0531 
0.0513 

-0.0695 
-0.0482 
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Table 4.6, "Filter Option Independent t-tests" is an independent t-test 

evaluation of the filter option for equilibrated concentrations of iron, manganese, 

cadmium, chromium, strontium and zinc for the Cocheco, Merrimack and 

Squamscott Rivers. Each comparison is filter vs. unfiltered samples. 

The independent t-test difference interval for filtering options for chromium 

concentration in all three rivers includes zero. Five of the six t-test for iron, 

manganese and strontium include zero in the difference interval. For cadmium, 

four of the six include zero (table 4.6). Zero in the t-test interval indicates there is 

no difference in sample concentrations whether the sample is filtered or not. 

Zinc is the only metal with a significant amount of non-zero difference 

intervals (table 4.6). The Cocheco and Merrimack Rivers have a positive 

difference interval for both nitrogen and air purged peepers. In the Squamscott, 

both nitrogen and air purged peepers have zero in the difference interval. A 

positive interval indicated that filtered samples have higher concentrations. 

Zero is included in the difference interval of 27 of the 36 comparisons. 

Seven comparisons have a positive interval while 2 have a negative. The 

independent t-test filter option results show no apparent difference between 

whether you filter the sample or not. Filtering results are another indication that 

oxygen has caused little or no metal precipitation within the chambers. 

4.3.3 Glove Box Extraction Comparison 

The nitrogen purged glove box was used for the equilibrated laboratory 

studies on Merrimack and Squamscott River sediments. As stated earlier, 
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atmospheric oxygen will affect redox sensitive metal more significantly than other 

heavy metals. 
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Figure 4.43: Merrimack River Glove Box Results for Redox Sensitive Metals 
Merrimack River equilibrated laboratory sediment pore water peeper samples are used in the iron 
and manganese graphs. Each sample removal category compares samples removed with and 
without the use of a nitrogen purged glove box. Concentrations are averages of peeper cells from 
1" below the surface to the bottom of the peepers. 

In figures 4.43 and 4.44, iron and manganese concentrations for the 

Merrimack and Squamscott Rivers for glove box extraction options are compared 

for purge gas type and filtering option. Iron concentrations for samples removed 

without a glove box are higher for three categories but lower in one for the 

Merrimack River figure (4.43). In the Squamscott River the split is even with two 
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categories higher for each glove box option (figure 4.44). Manganese 

concentrations are close to being even for the filter and purge gas options in the 

Squamscott River (figure 4.44). In the Merrimack River, manganese 

concentrations for samples removed with either glove box options are similar for 

air purged peepers. The results are split for nitrogen purged peepers (figure 

4.43). 
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Figure 4.44: Squamscott River Glove Box Results for Redox Sensitive Metals 
Squamscott River equilibrated laboratory sediment pore water peeper samples are used in the 
iron and manganese graphs. Each sample removal category compares samples removed with 
and without the use of a nitrogen purged glove box. Concentrations are averages of peeper cells 
from 1" below the surface to the bottom of the peepers. 
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Figure 4.45: Merrimack River Glove Box Results for Selected Metals 
Merrimack River equilibrated laboratory sediment pore water peeper samples are used in the Cd, 
Cr, Sr, and Zn graphs. Each sample removal category compares samples removed with and 
without the use of a nitrogen purged glove box. Concentrations are averages Of peeper cells from 
1" below the surface to the bottom of the peepers. 
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Figure 4.46: Squamscott River Glove Box Results for Selected 
Squamscott River equilibrated laboratory sediment pore water peeper samples are used in the 
Cd, Cr, Sr, and Zn graphs. Each sample removal category compares samples removed with and 
without the use of a nitrogen purged glove box. Concentrations are averages of peeper cells from 
1" below the surface to the bottom of the peepers. 
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The results for the selected heavy metals, seen in figures 4.45 and 4.46 

were similar to those of the redox sensitive metals. There was no discernable 

trend base on whether or not the glove box was used for any of the metals or 

river sediment. 

Table 4.7: Merrimack River Glove Box Comparison Independent t-tests 

Merrimack River laboratory sediment samples removed using a glove box are compared with 
those without the glove box in the t-tests. Comparisons are of equilibrated concentrations of 
elements, Fe, Mn, Cd, Cr, Sr & Zn. Concentrations used in the comparison are averages of 
peeper cells from 1" below the surface to the bottom of the peepers. fe.o.tEs, from student t-test 
tables, is 2.306. 

Metal 

Fe 

Mn 

Cd 

Cr 

Sr 

Zn 

Comparison 

N2Unfiltered 
N2 Filtered 

AirUnfiltered 
Air Filtered 

N2Unfiltered 
N2 Filtered 

Air Unfiltered 
Air Filtered 

N2 Unfiltered 
N2 Filtered 

Air Unfiltered 
Air Filtered 

N2 Unfiltered 
N2 Filtered 

AirUnfiltered 
Air Filtered 

N2 Unfiltered 
N2 Filtered 

AirUnfiltered 
Air Filtered 

N2 Unfiltered 
N2 Filtered 

Air Unfiltered 
Air Filtered 

Interval (ppm) 

10.26 
90.13 
20.71 
26.80 
2.193 
90.13 
6.433 
7.281 

0.000406 
0.004295 
0.000712 
0.001719 
9.78E-05 
0.002433 
-0.00038 
0.001126 
0.04284 
0.1691 

0.07706 
0.08300 
0.05063 
0.06002 
0.03416 
0.06834 

-73.08 
-44.10 
-53.52 
-75.52 
-10.50 
-44.10 
-5.231 
-10.85 

-0.003335 
-0.001951 
-0.002283 
-0.003241 

-9.953E-04 
-0.0008749 

-0.001776 
-0.0005117 

-0.1326 
-0.1366 

-0.06718 
-0.1253 

-0.09542 
-0.09148 
-0.05769 

-0.003630 



Independent t-tests for Merrimack River peepers comparing glove box 

options used for sample removal can be seen in table 4.7. Twenty-three out of 

the twenty-four independent t-tests for the Merrimack River had zero in the 

difference interval. Only unfiltered air peepers for chromium had a negative 

interval. 

Table 4.8: Squamscott River Glove Box Comparison Independent t-tests 

Squamscott River laboratory sediment samples removed using a glove box are compared with 
those without the glove box in the t-tests. Comparisons are of equilibrated concentrations of 
elements, Fe, Mn, Cd, Cr, Sr & Zn. Concentrations used in the comparison are averages of 
peeper cells from 1" below the surface to the bottom of the peepers. t8,o.o25 • from student t-test 
tables, is 2.306. 

Metal 

Fe 

Mn 

Cd 

Cr 

Sr 

Zn 

Comparison 

N2 Unfiltered 
N2 Filtered 

Air Unfiltered 
Air Filtered 

N2 Unfiltered 
N2 Filtered 

Air Unfiltered 
Air Filtered 

N2 Unfiltered 
N2 Filtered 

Air Unfiltered 
Air Filtered 

N2 Unfiltered 
N2 Filtered 

Air Unfiltered 
Air Filtered 

N2 Unfiltered 
N2 Filtered 

Air Unfiltered 
Air Filtered 

N2 Unfiltered 
N2 Filtered 

Air Unfiltered 
Air Filtered 

Interval (ppm) 

4.021 
5.464 
5.336 
9.744 

0.02172 
0.03805 
0.1777 
0.1331 

0.000263 
0.000306 
0.000378 
0.000657 
0.001843 
0.002499 
0.001735 
0.005888 
0.04174 

0.007457 
0.06731 
0.1547 

0.01482 
0.02741 
0.08292 
0.02344 

-2.379 
-1.845 
-5.669 
0.1314 

-0.1324 
-0.08829 

-0.1385 
-0.1344 

-0.0002848 
-0.0002330 

-0.00031385 
-9.065E-05 
-0.001694 
-0.001331 
-0.003013 
0.002651 
-0.01962 

-0.1153 
-0.1138 

-0.04924 
-0.07958 
-0.05436 
-0.06213 
-0.04339 
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Independent t-tests for Squamscott River peepers comparing glove box 

options used for sample removal can be seen in table 4.8. Twenty-two out of the 

twenty-four independent t-tests for the Squamscott River had zero in the 

difference interval. Only filtered air peepers for iron chromium had positive 

intervals. 

The overwhelming t-test evidence for both rivers indicates there is no 

difference in metal concentrations whether or not the glove box is used. This is a 

strong indication that atmospheric oxygen is not a problem with timely removal of 

samples from peepers 

4.4 Push Point Sampling Device 

4.4.1 Introduction 

Push point direct suction samples were extracted in conjunction with the 

peeper samples. Each push point sample was drawn with the sampler one inch 

from the face of the vertical peeper with end of the probe at a depth of five 

inches. Due to the sampler configuration, the extraction depth was between three 

and five inches. Samples were pumped into an acid washed bottle. The sample 

was subsequently extracted from the bottle with a syringe and, immediately put 

into an ICP vial. The standard procedure requires the sample to be taken after 

the stream cleared of all the sediment. The initial sample was taken immediately 

when the stream started to flow. The initial sample was full of suspended 

particles. The initial sample was removed from the bottle after the suspended 

particles sank to the bottom of the bottle. The settling time was usually five 
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minutes. Filtering was accomplished with an attached syringe filter. Unfiltered 

samples all had a small amount of sediment deposited in the bottom of the ICP 

vials prior to analysis. The expected results were that the initial samples would 

be greater than the standard samples. Also, it is expected that unfiltered samples 

should be greater than the filtered ones. This is due to solid particles being 

introduced into the sample vials. The particles are subsequently dissolved when 

nitric acid is added as a preserving agent to the samples 

4.4.2 Push Point Laboratory Sample Analysis 

Laboratory samples from the Merrimack River sediment was collected 

from two tubs, one with nitrogen purged peeper and one with air purged peepers. 

The sandy sediment of the Merrimack River provided a steady stream from the 

peristaltic pump. The fine sediment of the Squamscott River made it very difficult 

to obtain a sample so no analysis was performed. 

The graphs in figure 4.47 depict Merrimack River pore water metal 

concentrations for filtered and unfiltered samples removed using the standard 

extraction procedure and samples from the initially discharged pore water. There 

was little difference in concentration between the extraction categories for iron, 

manganese, cadmium and strontium. Unfiltered, standard extracted sample of 

zinc were lower than the other categories. Unfiltered initial concentrations of 

chromium were higher than the other categories (figure 4.47). 
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Figure 4.47: Merrimack River Laboratory Push Point Metal Analysis 
Merrimack River laboratory sediment pore water concentrations of elements Fe, Mn, Cd, Cr, Sr, 
and Zn. Samples used in the graphs were removed with the push point end at 5" below the 
surface of the sediment. Samples removed using the standard removal procedure and samples 
immediately removed from the device are shown with the filter option. 

Merrimack River sediment pore water independent t-tests shown in table 

4.9 are a comparison of filtered push point samples vs. unfiltered samples for the 

initial and standard sampling procedures. The t-test difference interval for iron, 

manganese, strontium and zinc include zero for both initial and standard 

135 



extracted procedures. This indicated there was no difference between filter 

options. Both extraction types for chromium and initial extraction for cadmium 

had negative difference intervals, indicating unfiltered samples had higher 

concentrations (table 4.9). 

Table 4.9: Merrimack River Push Point Independent t-test Filtered vs. Unfiltered 

Merrimack River laboratory sediment samples removed using the standard removal procedure 
and samples immediately removed from the device. Filtered vs. unfiltered comparisons are 
concentrations of elements, Fe, Mn, Cd, Cr, Sr & Zn. Samples used in the comparisons were 
removed with the push point end at 5" below the surface of the sediment, df = degree of freedom; 
tdf,o.o25are from student t-test tables 

Metal 

Fe 

Mn 

Cd 

Cr 

Sr 

Zn 

Comparison 

Initial Sample 
Standard 

Initial Sample 
Standard 

Initial Sample 
Standard 

Initial Sample 
Standard 

Initial Sample 
Standard 

Initial Sample 
Standard 

df 

8 
24 
8 

24 
8 

24 
8 

24 
8 

24 
8 

24 

t 

2.306 
2.064 
2.306 
2.064 
2.306 
2.064 
2.306 
2.064 
2.306 
2.064 
2.306 
2.064 

Interval (ppm) 

65.27 
46.09 
9.220 

3.8169 
-3.981 E-05 

0.001512 
-0.01819 
-0.00061 
0.04922 
0.02947 
0.08632 
0.1559 

-55.97 
-12.86 
-11.72 
-3.963 

-0.0046 
-7.307E-04 

-0.0345 
-0.003144 
-0.06161 
-0.02593 

-0.1559 
-0.0963 

The independent t-test comparisons in figure 4.10 are of the initially 

extracted samples vs. standard extracted samples from the Merrimack River 

laboratory studies. The comparisons are filtered samples all include zero in the 

difference interval. This indicates that when filtering, there is no discemable 

difference in the concentrations. Unfiltered samples of iron, manganese and 

strontium also include zero in the difference interval. Unfiltered samples for 

cadmium, chromium and zinc have a positive difference. A positive difference 
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indicates the initially extracted samples have a higher concentration than the 

standard extracted ones (table 4.10). 

Table 4.10: Merrimack River Push Point Independent t-test Initial Sample vs. 

Standard Procedure 

Merrimack River laboratory sediment push point samples. Samples removed using the standard 
removal procedure and samples immediately removed from the device comparisons are 
concentrations of elements, Fe, Mn, Cd, Cr, Sr & Zn. Samples used in the comparisons were 
removed with the push point end at 5" below the surface of the sediment, df = degree of freedom; 
tdf,o.o25 are from student t-test tables 

Metal 

Fe 

Mn 

Cd 

Cr 

Sr 

Zn 

Comparison 

Filtered 
Unfiltered 
Filtered 

Unfiltered 
Filtered 

Unfiltered 
Filtered 

Unfiltered 
Filtered 

Unfiltered 
Filtered 

Unfiltered 

df 

18 
14 
18 
14 
18 
14 
18 
14 
18 
14 
18 
14 

t 

2.101 
2.145 
2.101 
2.145 
2.101 
2.145 
2.101 
2.145 
2.101 
2.145 
2.101 
2.145 

Interval (ppm) 

37.61 
38.08 
7.000 
6.556 

0,001071 
0.003333 
0.001032 
0.02859 
0.05181 
0.05933 
0.1449 
0.1337 

-58.05 
-34.59 
-7.051 
-4.255 

-0.002584 
0.0005774 
-0.001586 

0.01975 
-0.02841 
-0.01999 
-0.07089 
0.02025 

The Merrimack River laboratory results for the redox sensitive metals 

indicate there is no difference whether the initial sample or standard extraction 

method is used. It also does not matter if redox metal samples are filtered. The 

results for chromium indicate filtering option has an effect on sample 

concentration. 
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4.4.3 Push Point Field Sample Analysis 
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Figure 4.48: Merrimack River Field Push Point Metal Analysis 
Merrimack River field sediment pore water concentrations of elements Fe, Mn, Cd, Cr, Sr, and 
Zn. Samples used in the graphs were removed with the push point end at 5" below the surface of 
the sediment. Samples removed using the standard removal procedure from the device are 
shown with the filter option. 
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Samples were obtained in the sandy sediment in the upper region of the 

Cocheco River but no samples could be collected from the lower clay region. 

Only the standard extraction method was employed. Manganese, chromium and 

strontium showed little difference between filtered and unfiltered samples (figure 

4.48). Filtered iron and unfiltered zinc had greater concentration than their 

counterparts. There was very litter cadmium in the Cocheco River sediment pore 

water (figure 4.48). 

4.4.4 Glove Box Extraction Analysis 

Extraction of Merrimack River pore water was performed with the push 

point using a nitrogen purged glove box. Filtered and unfiltered standard 

extracted samples and unfiltered initially extracted samples were used to 

determine if atmospheric oxygen effected sampling concentrations. The push 

point tubing was purged with nitrogen from the glove box prior to removing 

samples with the push point. For non-glove box extraction, the tubing was not 

purged. It is expected that extraction with the glove box would eliminate any 

oxygen introduction in the sample. The resultant metal concentrations should be 

higher for samples removed with the nitrogen purged glove box as compared to 

those extracted with out it. 

Cadmium and chromium concentration are shown in figure 4.49. The 

results show that cadmium concentrations are higher in all categories for 

extractions with out the glove box. Chromium results are mixed. The unfiltered 

initial samples have higher concentration in the non-glove box option while 

standard unfiltered samples are higher for the glove box extracted samples. 
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Filtered samples for chromium have similar concentrations regardless of the 

glove box option (figure 4.49) 
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Figure 4.49: Push Point Glove Box Comparison of Cadmium and Chromium 
Merrimack River laboratory sediment pore water push point samples are used in the Cd & Cr 
graphs. Each sample removal category compares samples removed with and without the use of a 
nitrogen purged glove box. Samples used in the graphs were removed with the push point end at 
5" below the surface of the sediment. 
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Figure 4.50: Glove Box Comparison of Iron and Magnesium 
Merrimack River laboratory sediment pore water push point samples are used in the Fe & Mn 
graphs. Each sample removal category compares samples removed with and without the use of a 
nitrogen purged glove box. Samples used in the graphs were removed with the push point end at 
5" below the surface of the sediment. 

Iron and manganese concentration are shown in figure 4.50. The non-

glove box option has slightly higher concentrations for all categories. 

Strontium and zinc concentration are shown in figure 4.51. Strontium 

concentrations for the non-glove box option have slightly higher concentrations 

for all categories. The zinc results are similar to those of chromium. The 

unfiltered initial samples have higher concentration in the non-glove box option 
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while standard unfiltered samples are higher for the glove box extracted samples. 

Filtered samples for zinc have similar concentrations regardless of the glove box 

option (figure 4.51) 
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Figure 4.51: Glove Box Comparison of Strontium and Zinc 
Merrimack River laboratory sediment pore water push point samples are used in the Sr & Zn 
graphs. Each sample removal category compares samples removed with and without the use of a 
nitrogen purged glove box. Samples used in the graphs were removed with the push point end at 
5" below the surface of the sediment. 
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Table 4.11: Merrimack River Push Point Independent t-test Initial Comparison of 

Glove Box Extraction 

Merrimack River laboratory sediment samples removed using a glove box are compared with 
those without the glove box in the t-tests. Comparisons are of equilibrated concentrations of 
elements, Fe, Mn, Cd, Cr, Sr & Zn. Samples used in the comparisons were removed with the 
push point end at 5" below the surface of the sediment. t6,o.o25 • from student t-test tables, is 2.447. 

Metal 

Fe 

Mn 

Cd 

Cr 

Sr 

Zn 

Comparison 

Initial Unfiltered 
Standard Unfiltered 
Standard Filtered 
Initial Unfiltered 

Standard Unfiltered 
Standard Filtered 
Initial Unfiltered 

Standard Unfiltered 
Standard Filtered 
Initial Unfiltered 

Standard Unfiltered 
Standard Filtered 
Initial Unfiltered 

Standard Unfiltered 
Standard Filtered 
Initial Unfiltered 

Standard Unfiltered 
Standard Filtered 

Interval (ppm) 

35.37 
19.87 
24.32 
8.680 
6.391 
6.564 

0.002467 
0.001266 
0.001257 
0.01023 

0.002054 
0.001427 
0.06048 
0.05477 
0.05512 
0.08470 
0.04652 
0.05094 

-18.75 
-3.961 
-4.278 
-5.780 
-3.318 
-3.464 

-0.00086 
-0.00028 
-0.00019 
-0.00442 
-0.00586 
-0.00084 
-0.04096 
-0.01864 
-0.01766 
-0.05648 
-0.06521 
-0.04939 

The independent t-test shown table 4.11 is a comparison of no glove box 

vs. glove box for pore water extraction with a push point sampler. The results 

were part of the laboratory test of Merrimack River sediment. All of the difference 

intervals include zero. The prevailing evidence is that there is no difference 

wither the nitrogen purged glove box is used or not. 
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4.5 Device Comparison 

4.5.1 Introduction 

Peeper and push point pore water samplers are compared in this section. 

The purpose of the device comparison is to give researchers a reference point 

for metal concentrations of samples removed with the devices. Merrimack River 

sediment, used in the laboratory experiments, is used for the comparison. 

Unfiltered peeper samples with be compared with the filtered and unfiltered 

standard push point extracted samples. Push point samples were taken 1" in 

front of the peeper face with the probe 5" below the sediment surface. The 

peepers used in the comparisons have all reached equilibration. Peeper 

concentrations are an average of cell concentrations 1" below the surface to the 

bottom of the peeper. 

4.5.2 Evaluation 

Graphs seen in figures 4.52, 4.53 and 4.54 compare metal concentrations 

of specific peepers with the corresponding push point sample extractions. Both 

filtered and unfiltered push point samples of cadmium and chromium 

concentrations are higher than those extracted with the peepers (figure 4.52). For 

iron, filtered and unfiltered push point sample are higher than the peeper sample 

concentrations (figure 4.53). For manganese, two peeper have higher 

concentrations than either filtering option for the push points. One of the other 

peepers has a lower manganese concentration. The fourth comparison has 

approximately equal manganese concentrations for both devices (figure 4.53). 
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Figure 4.52: Device Comparison of Cadmium and Chromium 
Merrimack River laboratory sediment samples are used for comparing peepers with push point 
sampling devices. Comparisons are of elements Cd & Cr. Peeper samples used in the 
comparison are averages of cells from 1" below the surface to the bottom of the peepers. Push 
Point samples used in the comparisons were removed with its end at 5° below the surface of the 
sediment. 
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Figure 4.53: Device Comparison of Iron and Manganese 
Merrimack River laboratory sediment samples are used for comparing peepers with push point 
sampling devices. Comparisons are of elements Fe & Mn. Peeper samples used in the 
comparison are averages of cells from 1" below the surface to the bottom of the peepers. Push 
Point samples used in the comparisons were removed with its end at 5" below the surface of the 
sediment. 
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Figure 4.54: Device Comparison of Strontium and Zinc 
Merrimack River laboratory sediment samples are used for comparing peepers with push point 
sampling devices. Comparisons are of elements Sr & Zn. Peeper samples used in the 
comparison are averages of cells from 1" below the surface to the bottom of the peepers. Push 
Point samples used in the comparisons were removed with its end at 5" below the surface of the 
sediment. 



Three of the four peeper and push point device comparisons for strontium 

have higher concentration in the push points, regardless of filtering option (figure 

4.54). In the fourth comparison, the peeper has the higher strontium 

concentration. All of the unfiltered push point samples have lower zinc 

concentrations than the filtered push point and peeper samples (figure 4.54). 

Comparisons of the filtered push point and peeper are split, two each, for which 

device has the higher zinc concentration (figure 4.54). 

The paired t-test was used to compare peepers with the different push 

point filtering options is shown in table 4.12. The average difference between the 

devices and the t-test difference interval is included in the table. The average 

difference and difference interval are calculated by subtracting push point metal 

concentration values from corresponding peeper sample concentrations. As a 

result, a negative difference indicates push point metal concentrations are higher 

than the peeper's. 

The average difference for iron concentration is -77ppm and -100ppm with 

a concentration spread of all devices from 66ppm to 260ppm (table 4.12). The 

iron concentration t-test difference interval for unfiltered push point includes zero. 

For the filtered samples from the filtered push point device, the difference interval 

is negative. 

For a scale of 12ppm to 28ppm, the average difference of manganese 

concentrations is 0.77ppm and 0.53 for unfiltered and filtered push point devices, 

respectively. Zero is included in the t-test difference interval for both push point 

filtering options. 
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Table 4.12: Paired t-test for Device Comparisons of Peeper and Push Point 

Samples 
Merrimack River laboratory sediment samples are used for comparing peepers with push point 
sampling devices. Comparisons are of elements, Fe, Mn, Cd, Cr, Sr & Zn. Peeper samples used 
in the comparison are averages of cells from 1" below the surface to the bottom of the peepers. 
Push Point samples used in the comparisons were removed with its end at 5" below the surface 
of the sediment. T30025. from student t-test tables, is 3.182. 

Metal 

Fe 

Mn 

Cd 

Cr 

Sr 

Zn 

Comparison 

Unfiltered Push Point 
Filtered Push Point 

Unfiltered Push Point 
Filtered Push Point 

Unfiltered Push Point 
Filtered Push Point 

Unfiltered Push Point 
Filtered Push Point 

Unfiltered Push Point 
Filtered Push Point 

Unfiltered Push Point 
Filtered Push Point 

Average 
Difference 

(ppm) 
-77.345 

-100.414 
0.768791 
0.531016 
-0.00319 
-0.00391 
-0.00546 
-0.00406 
-0.02228 
-0.02789 
0.09163 
-0.00547 

interval (ppm) 

-171.9 
-177.5 
-7.240 
-7.640 

-0.0072 
-0.00723 
-0.00926 
-0.00665 
-0.09957 
-0.09829 
-0.01381 
-0.1843 

17.1702 
-23.34 
8.777 
8.702 

0.000826 
-0.00059 
-0.00166 
-0.00148 
0.05501 
0.04251 
0.1971 
0.1734 

The comparison of cadmium concentrations has an average difference of -

0.003ppm and -0.004ppm with a scale of 0.003ppm to 0.01 ppm for unfiltered and 

filtered push point devices, respectively (table 4.12). Zero is included in the t-test 

difference interval for unfiltered push point cadmium concentrations The t-test 

difference interval for filtered push point cadmium concentration is negative (table 

4.12). 

The t-test difference intervals for comparisons of chromium concentrations 

are negative for both push point filtering options (table 4.12). The averaged 
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difference of the chromium concentrations is -0.005ppm for unfiltered push point 

samples and -0.004ppm for filtered push point samples with concentrations 

between 0.002ppm to 0.01 ppm (table 4.12). 

For strontium concentration between 0.28ppm to 0.39ppm, the average 

concentration difference is -0.02ppm and -0.03ppm for unfiltered and filtered 

push point devices, respectively (table 4.12). Zero is included in the t-test 

difference interval for both push point filtering options (table 4.12). 

For zinc concentration between 0.05ppm to 0.3ppm, the average 

concentration difference is 0.09ppm and -0.005ppm for unfiltered and filtered 

push point devices, respectively (table 4.12). Zero is included in the t-test 

difference interval for both push point filtering options (table 4.12). 

Differences in sample concentration between peepers and push points 

devices are dependant on the metal being sampled. For example, there is no 

apparent difference in sampling device for strontium or zinc while the push point 

device yield higher concentrations of chromium. 
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CHAPTER 5 

CONCLUSIONS & RECOMMENDATION 

5.1 Introduction 

The primary purpose of this thesis is to determine the best method for 

using peepers for sediment sampling in the intertidal zone. Since Carignan stated 

that preparation and sample removal was the key to quality results, they were the 

focus of this study. It should be noted that Carignan completed his experiments 

in fresh water at the bottom of the lakes and those perform here were in the 

brackish water of an estuary. The push point direct sampler was examined with 

the results compared to those of the peeper. This device allows the researcher to 

acquire sample in a timely manner. Each of the following sections will discuss the 

conclusions, followed by recommendation for best use of the devices. 

5.2 Peepers 

5.2.1 Peeper Preparation 

The results of samples analyzed for redox sensitive metals, selected metal 

and anion were examined. The affects of oxygen in the makeup water was 

evaluated by comparing peepers prepared with by purging air or nitrogen into the 

peeper keeper water. Oxygen introduction into the sampling devices was 
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expected to cause metal precipitation that would result in lower reported 

concentrations. 

Analysis of redox sensitive metals iron and manganese indicated oxygen 

was not a problem. In the Merrimack River sediment, air purged peeper had a 

slightly higher iron concentration. This is strong evidence that oxygen introduced 

into the sediment by the sampling devices in not causing artifacts. The other 

sediments indicated there was no difference in iron concentration based on gas 

purge type. The t-tests verified the results. Manganese analysis also indicated 

there was no real difference between the gas purge types. The equilibration 

trends indicated equilibrium was reached between four and six weeks. 

The selected heavy metals analyzed showed similar results to those of the 

redox sensitive metals. The trends showed equilibration was in the same time 

period and oxygen introduction did not appear to be a problem. 

Anion analysis followed the same pattern as the metals with oxygen 

tending not to be a problem. Nitrogen purging introduced nitrates into the 

makeup bath. Nitrite trends used in this study were not a good indication of 

microbial activity. However, the laboratory tubs did release gas during peeper 

insertion which is an indicator of microbial activity. 

As preparation is a time consuming ordeal, it is recommended that the 

peepers be prepared in the laboratory. Since oxygen does not present a 

problem, it is recommended that removal of oxygen in the makeup water is not 

required. However, care should be taken not to introduce air bubbles in the 

peeper chambers during assembly. For field excursions that require travel, the 
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prepared peepers should be sealed in the peeper keeper. The peeper keeper 

should be shipped in a custom, reusable, sealable shipping container. Upon 

arrival at the sampling site, the keeper should not be removed from the shipping 

container until just prior to sampling. Leaving the shipping container behind, the 

keepers should be used to transport the peepers from the staging area to the 

sampling site. Peepers should be removed from the keeper and inserted 

immediately. 

5.2.2 Peeper Material 

Orange tint was evident on peepers based on sediment type. Sandy or 

loose sediment had the orange tint. Sediment with fine, closely packed particle 

did not have any orange tint. Also, peepers that were continually covered by 

water (not in the intertidal zone) did not exhibit the orange tint. Based on the 

experimental design, oxygen effects in peeper material was included in the 

preparation studies. The results indicate oxygen in the material does not affect 

sampling concentrations. It should be noted that the horizontal peepers made 

from acrylic did not show an orange tint in any of the sediment. It should be noted 

that those peepers were above the aerobic/anaerobic interface. 

Polycarbonate was originally used to provide durability in the cobble, clay 

sediment in the Cocheco River. Since orange tint did not form on acrylic peepers 

in that sediment, it is recommended that any future peepers be made from 

acrylic. 
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5.2.3 Sample Removal 

Most of the studies performed in this thesis included a syringe filter option. 

The results indicated that it did not matter whether the sample was filtered or not. 

The nitrogen purged glove box study also indicated it was not needed to extract a 

reliable sample. The best practice is to remove the sample immediately after the 

peeper is removed from the sediment. A disposable syringe should be used to 

extract the sample. The extracted sample should be immediately put into a vial. 

The samples should be preserved in a timely manner. 

5.3 Push Point Sampler 

The push point sampling device yields a sample with a minimum of effort and 

training but it is only effective in loose, sandy sediment. The results indicate that 

nitrogen purged glove box or other oxygen limiting device is not needed for 

sample removal. Unfiltered samples had only a slightly higher concentration than 

filtered ones. However, unfiltered samples left particles in the bottom of ICP 

tubes. It is, therefore, recommended that samples be filtered during the 

extraction procedure. The best practice calls for the sample to be deposited into 

a clean beaker or bottle directly from the push point device. The sample should 

be drawn immediately from this container with a syringe with attached filter, and 

then deposited into an ICP vial. The equilibration trends indicated equilibrium 

was reached between four and six weeks. 
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5.4 Device Comparison 

Using peepers and push points in conjunction is a useful research tool. 

Preliminary results can be obtained with the push point at the first visit to a 

sediment sampling site. Samples are easily extracted with the push point and 

multiple areas at a site can be evaluated quickly. The preliminary findings can be 

used to identify "hot spots" that peepers can be used to sample at a later date. 

The prevailing evidence is that push point yields a higher concentration of 

certain metals than those obtained with peepers. However, the difference is not 

so great that it does not preclude using the devices together as part of the overall 

sampling plan. 

The flexibility of peeper designs allows it to be modified to accommodate 

sampling in a variety of circumstances and sediment types. The device can yield 

a depth profile and is effective for evaluating caps. This makes the peeper the 

primary sampling tool for heavy metals in pore water analysis. The limitations of 

push point make it a secondary sampling tool. Using the push point for geotextile 

reactive mat evaluation is not recommended. 
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CHAPTER 6 

FUTURE RESEARCH 

6.1 Porewater Flow 

This thesis was designed to evaluate sampling devices to evaluate the 

effectiveness geotextile reactive caps. The majority of the field studies were 

conducted in the intertidal zone in estuaries. The field sediment had flow from 

ground water below and tidal influences from above. Each of these sources has 

significantly different constituents and characteristics. The flow will actively 

recharge the pore water adjacent to the peeper membrane. The laboratory 

portion of the studies also used the sediment from the intertidal zone. At least an 

inch layer of water was kept above the sediment during the equilibration time. 

The pore water was stagnant and the only recharging came from diffusion. 

An experiment should be designed to study the effects of the tidal flow. It 

should examine whether there is a correlation between equilibration and tidal 

influences. The laboratory study should incorporate a pumping station that can 

add fresh water from below the sediment or brackish water from the top. 

Comparing the different effects will give a better understanding of how the tidal 

changes impact the performance of the peepers. 
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6.2 Intertidal vs. Deep River Water 

Carignan performed his studies at the bottom of lakes while the majority of 

experiments in this thesis were performed in the intertidal zone. There were 

enough differences in the experimental design that a direct comparison between 

the methods was subjective. The flow of the water above the sediment in lakes is 

limited compared to the flow in rivers. The water at the bottom of a lake is 

anaerobic while that in the river may not be. The experiment should be designed 

so samples can be compared at varying depths from the intertidal zone to the 

middle of a river. 

6.3 Equilibration 

The design of the equilibration studies in thesis made it difficult to 

determine the precise equilibration time. There was an expected difference 

between field and laboratory studies. The range for the field studies was between 

zero and three weeks, depending on the metal. For the laboratory experiments it 

was between three and five weeks with the possibility of a greater than five week 

equilibration time. The regression line analysis requires a minimum of three data 

points but many more to be statistically accurate. More data points should be in 

the kinetically active zone of each experiment type. For example in future field 

studies, peepers should be removed after day one or two and continue on two or 

three day cycle through at least week 3. In the laboratory experiments, a similar 

interval should be used starting after week two. 
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