Difference between revisions of "User:Jhurley/sandbox"

From Enviro Wiki
Jump to: navigation, search
(Surface Runoff on Ranges)
 
Line 1: Line 1:
A Conceptual Site Model (CSM) is a collection of information about a contaminated site that integrates the available evidence regarding its hydrogeologic setting, contaminant sources, exposure pathways, potential receptors, and site history.  A CSM for a [[Wikipedia: Light non-aqueous phase liquid | Light Non-Aqueous Phase Liquid (LNAPL)]] site focuses on several key concepts: the stage in the LNAPL site life cycle, LNAPL distribution in the subsurface and the resulting mobility of the LNAPL, LNAPL as a source of dissolved and vapor plumes, and the attenuation of LNAPL sources over time.
+
==Remediation of Stormwater Runoff Contaminated by Munition Constituents==
 +
Past and ongoing military operations have resulted in contamination of surface soil with [[Munitions Constituents | munition constituents (MC)]], which have human and environmental health impacts.  These compounds can be transported off site via stormwater runoff during precipitation events. Technologies to “trap and treat” surface runoff before it enters downstream receiving bodies (e.g., streams, rivers, ponds) (see Figure 1), and which are compatible with ongoing range activities are needed.  This article describes a passive and sustainable approach for effective management of munition constituents in stormwater runoff.
 
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
 
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
  
'''Related Article(s)'''
+
'''Related Article(s):'''
* [[LNAPL Remediation Technologies]]
 
* [[NAPL Mobility]]
 
* [[Natural Source Zone Depletion (NSZD)]]
 
* [[Natural Attenuation in Source Zone and Groundwater Plume - Bemidji Crude Oil Spill]]
 
* [[Monitored Natural Attenuation (MNA)]]
 
* [[Biodegradation - Hydrocarbons]]
 
  
'''CONTRIBUTOR(S):''' [[Dr. Charles Newell, P.E. | Charles Newell]]
+
*[[Munitions Constituents]]
  
'''Key Resource(s):'''
 
* LNAPL Site Management: LCSM Evolution, Decision Process, and Remedial Technologies. LNAPL-3. ITRC.<ref name="LNAPL-3">Interstate Technology and Regulatory Council (ITRC), 2018. LNAPL Site Management: LCSM Evolution, Decision Process, and Remedial Technologies. LNAPL-3. ITRC, LNAPL Update Team, Washington, DC.  [https://lnapl-3.itrcweb.org LNAPL-3 Website]</ref>
 
  
* Managing Risk at LNAPL Sites - Frequently Asked Questions, 2nd Edition. API.<ref name="Sale2018"> Sale, T., Hopkins, H., and Kirkman, A., 2018.  Managing Risk at LNAPL Sites - Frequently Asked Questions, 2nd Edition. American Petroleum Institute (API), Washington, DC. 72 pages. [https://www.api.org/oil-and-natural-gas/environment/clean-water/ground-water/lnapl/lnapl-faqs Free download from API.] [https://www.enviro.wiki/index.php?title=File:Sale-2018_LNAPL_FAQs_2nd_ed.pdf Report.pdf]</ref>
+
'''Contributor:''' Mark E. Fuller
  
==Life Cycle of LNAPL Sites==
+
'''Key Resource(s):'''
[[File:Newell1w2Fig1.png |thumb|left|250px| Figure 1.  Early, Middle, and Late Stage LNAPL releases<ref name= "Sale2018"/>.  The key distinctions are the presence of continuous LNAPL that can be mobile and the amount of time that has elapsed for NSZD to remove LNAPL.]]
+
*SERDP Project ER19-1106: Development of Innovative Passive and Sustainable Treatment Technologies for Energetic Compounds in Surface Runoff on Active Ranges
A Conceptual Site Model (CSM) is a collection of information about a contaminated site that integrates the available evidence regarding its hydrogeologic setting, contaminant sources, exposure pathways, potential receptors, and site history (see ASTM E1689-95(2014)<ref name="ASTM2014a"> ASTM, 2014. Standard Guide for Developing Conceptual Site Models for Contaminated Sites. ASTM E1689-95(2014), ASTM International, West Conshohocken, PA. [https://doi.org/10.1520/E1689-95R14 DOI: 10.1520/E1689-95R14]  http://www.astm.org/cgi-bin/resolver.cgi?E1689</ref> and ASTM E2531-06(2014)<ref name="ASTM2014b"> ASTM, 2014. Standard Guide for Development of Conceptual Site Models and Remediation Strategies for Light Nonaqueous-Phase Liquids Released to the Subsurface. ASTM E2531-06(2014), ASTM International, West Conshohocken, PA. [https://doi.org/10.1520/E2531-06R14  DOI: 10.1520/E2531-06R14]  http://www.astm.org/cgi-bin/resolver.cgi?E2531</ref>).  When developing a CSM for an LNAPL site, it is important to understand that LNAPL releases evolve and change from what are referred to as Early Stage sites to Middle Stage and then to Late Stage sites<ref name="Sale2018"/> (Figure 1). 
 
 
 
An Early Stage site is characterized by the presence of a continuous LNAPL zone where a thick layer of LNAPL accumulation (also known as free product) is observed in monitoring wells. The continuous LNAPL zone (or LNAPL body) may be mobile at Early Stage sites, migrating into previously non-impacted areas. Removal of significant LNAPL mass by active pumping may be feasible at these sites. Early Stage sites are now relatively rare in the United States due to stringent environmental regulations enacted in the 1980s which emphasized preventing releases.
 
[[File:Newell1w2Fig2a.png |thumb|500px| Figure 2a.  Time lapse conceptualization of the formation of an LNAPL body<ref name="ITRC2019"> Interstate Technology and Regulatory Council (ITRC), 2019. LNAPL Training: Connecting the Science to Managing Sites. Part 1: Understanding LNAPL Behavior in the Subsurface. ITRC, Washington, DC. [[Media: ITRC2019_LNAPLtrainingPart1.pdf | Slides.pdf]]</ref>.]]
 
[[File:Newell1w2Fig2b.png |thumb|500px| Figure 2b.  Sand tank experiment of an LNAPL release<ref name="ITRC2019"/>.]]
 
  
Many sites in the U.S. are now considered to be in the Middle Stage, where the LNAPL thickness in wells has been largely depleted by natural spreading of the LNAPL body, [[Natural Source Zone Depletion (NSZD)]], smearing of the water table, and/or active remediation, and where the LNAPL bodies are stable or shrinking<ref name="LNAPL-3"/><ref name="Sale2018"/> (Figure 1). Active pumping characteristically only recovers LNAPL at relatively low rates of under 100 gallons per acre per year at Middle Stage sites, but NSZD rates may be much higher, on the order of 100s to 1,000s of gallons per acre per year. Middle Stage dissolved phase plumes, typically comprised of monoaromatics such as benzene, toluene, ethyl benzene, and xylenes, are stable or shrinking over time.
+
==Background==
 +
===Surface Runoff Characteristics and Treatment Approaches===
 +
[[File: FullerFig1.png | thumb | 300 px | Figure 1. Conceptual model of passive trap and treat approach for MC removal from stormwater runoff]]
 +
During large precipitation events the rate of water deposition exceeds the rate of water infiltration, resulting in surface runoff (also called stormwater runoff). Surface characteristics including soil texture, presence of impermeable surfaces (natural and artificial), slope, and density and type of vegetation all influence the amount of surface runoff from a given land area. The use of passive systems such as retention ponds and biofiltration cells for treatment of surface runoff is well established for urban and roadway runoff. Treatment in those cases is typically achieved by directing runoff into and through a small constructed wetland, often at the outlet of a retention basin, or via filtration by directing runoff through a more highly engineered channel or vault containing the treatment materials. Filtration based technologies have proven to be effective for the removal of metals, organics, and suspended solids<ref>Sansalone, J.J., 1999. In-situ performance of a passive treatment system for metal source control. Water Science and Technology, 39(2), pp. 193-200. [https://doi.org/10.1016/S0273-1223(99)00023-2 doi: 10.1016/S0273-1223(99)00023-2]</ref><ref>Deletic, A., Fletcher, T.D., 2006. Performance of grass filters used for stormwater treatment—A field and modelling study. Journal of Hydrology, 317(3-4), pp. 261-275. [http://dx.doi.org/10.1016/j.jhydrol.2005.05.021 doi: 10.1016/j.jhydrol.2005.05.021]</ref><ref>Grebel, J.E., Charbonnet, J.A., Sedlak, D.L., 2016. Oxidation of organic contaminants by manganese oxide geomedia for passive urban stormwater treatment systems. Water Research, 88, pp. 481-491. [http://dx.doi.org/10.1016/j.watres.2015.10.019 doi: 10.1016/j.watres.2015.10.019]</ref><ref>Seelsaen, N., McLaughlan, R., Moore, S., Ball, J.E., Stuetz, R.M., 2006. Pollutant removal efficiency of alternative filtration media in stormwater treatment. Water Science and Technology, 54(6-7), pp. 299-305. [https://doi.org/10.2166/wst.2006.617 doi: 10.2166/wst.2006.617]</ref>.
  
Late Stage sites only have a sparse distribution of residual (trapped) LNAPL due to long-term NSZD and any active remediation that has been performed at the site. The potential risks to receptors are typically low at Late Stage sites due to relatively low concentrations of LNAPL constituents in the dissolved phase and/or vapor plumes.
+
===Surface Runoff on Ranges===
 +
Surface runoff represents a major potential mechanism through which energetics residues and related materials are transported off site from range soils to groundwater and surface water receptors (Figure 2). This process is particularly important for energetics that are water soluble (e.g., [[Wikipedia: Nitrotriazolone | NTO]] and [[Wikipedia: Nitroguanidine | NQ]]) or generate soluble daughter products (e.g., [[Wikipedia: 2,4-Dinitroanisole | DNAN]] and [[Wikipedia: TNT | TNT]]). While traditional MC such as [[Wikipedia: RDX | RDX]] and [[Wikipedia: HMX | HMX]] have limited aqueous solubility, they also exhibit recalcitrance to degrade under most natural conditions. RDX and [[Wikipedia: Perchlorate | perchlorate]] are frequent groundwater contaminants on military training ranges. While actual field measurements of energetics in surface runoff are limited, laboratory experiments have been performed to predict mobile energetics contamination levels based on soil mass loadings<ref>Cubello, F., Polyakov, V., Meding, S.M., Kadoya, W., Beal, S., Dontsova, K., 2024. Movement of TNT and RDX from composition B detonation residues in solution and sediment during runoff. Chemosphere, 350, Article 141023. [https://doi.org/10.1016/j.chemosphere.2023.141023 doi: 10.1016/j.chemosphere.2023.141023]</ref><ref>Karls, B., Meding, S.M., Li, L., Polyakov, V., Kadoya, W., Beal, S., Dontsova, K., 2023. A laboratory rill study of IMX-104 transport in overland flow. Chemosphere, 310, Article 136866. [https://doi.org/10.1016/j.chemosphere.2022.136866 doi: 10.1016/j.chemosphere.2022.136866]&nbsp; [[Media: KarlsEtAl2023.pdf | Open Access Article]]</ref>.
  
==LNAPL Body Formation==
+
==Toxicological Effects of PFAS==
LNAPLs released from tanks, pits, pipelines, or other sources will percolate downwards under the influence of gravity through permeable pathways in the unsaturated zone (e.g., soil pore space, fractures, and macropores) depending on the volume and pressure head of the LNAPL release, until encountering an impermeable layer or the water table, causing the LNAPL body to spread laterally. The Interstate Technology and Regulatory Council (ITRC)<ref name="LNAPL-3"/> describes this downward movement toward the water table this way:
+
The characterization of toxicological effects in human health risk assessments is based on toxicological studies of mammalian exposures to per- and polyfluoroalkyl substances (PFAS), primarily studies involving [[Wikipedia:Perfluorooctanesulfonic acid | perfluorooctanesulfonic acid (PFOS)]] and [[Wikipedia:Perfluorooctanoic acid|perfluorooctanoic acid (PFOA)]]. The most sensitive noncancer adverse effects involve the liver and kidney, immune system, and various developmental and reproductive endpoints<ref name="USEPA2024b">United States Environmental Protection Agency (USEPA), 2024. Per- and Polyfluoroalkyl Substances (PFAS) Final PFAS National Primary Drinking Water Regulation. [https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas Website]</ref>. A select number of PFAS have been evaluated for carcinogenicity, primarily using epidemiological data. Only PFOS and PFOA (and their derivatives) have sufficient data for USEPA to characterize as ''Likely to Be Carcinogenic to Humans'' via the oral route of exposure. Epidemiological studies provided evidence of bladder, prostate, liver, kidney, and breast cancers in humans related to PFOS exposure, as well as kidney and testicular cancer in humans and limited evidence of breast cancer related to PFOA exposure<ref name="USEPA2024b"/><ref name="USEPA2016a">United States Environmental Protection Agency (USEPA), 2016. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS). Office of Water, EPA 822-R-16-004. [https://www.epa.gov/sites/production/files/2016-05/documents/pfos_health_advisory_final-plain.pdf  Free Download]&nbsp; [[Media: USEPA-2016-pfos_health_advisory_final-plain.pdf | Report.pdf]]</ref><ref name="USEPA2016b">United States Environmental Protection Agency (USEPA), 2016b. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA). Office of Water, EPA 822-R-16-005. [https://www.epa.gov/sites/production/files/2016-05/documents/pfoa_health_advisory_final_508.pdf Free Download]&nbsp; [[Media: pfoa_EPA 822-R-16-005.pdf | Report.pdf]]</ref>.
 +
 
 +
USEPA’s Integrated Risk Management System (IRIS) Program is developing Toxicological Reviews to improve understanding of the toxicity of several additional PFAS (i.e., not solely PFOA and PFOS). Toxicological Reviews provide an overview of cancer and noncancer health effects based on current literature and, where data are sufficient, derive human health toxicity criteria (i.e., human health oral reference doses and cancer slope factors) that form the basis for risk-based decision making. For risk assessors, these documents provide USEPA reference doses and cancer slope factors that can be used with exposure information and other considerations to assess human health risk. Final Toxicological Reviews have been completed for the following PFAS:
 +
*Perfluorooctanesulfonic acid (PFOS)
 +
*Perfluorooctanoic acid (PFOA)
 +
*Perfluorobutanoic acid (PFBA)
 +
*Perfluorohexanoic acid (PFHxA)
 +
*Perfluorobutane sulfonic acid (PFBS)
 +
*Perfluoropropionic acid (PFPrA)
 +
*Perfluorohexane sulfonic acid (PFHxS)
 +
*Lithium bis[(trifluoromethyl)sulfonyl]azanide (HQ-115)
 +
*Hexafluoropropylene oxide dimer acid (HFPO DA) and its Ammonium Salt
  
<blockquote>''During the downward movement of LNAPL through the soil, the presence of confining layers, subsurface heterogeneities, or other preferential pathways may result in irregular and complex lateral spreading and/or perching of LNAPL before the water table is encountered. Once at the water table, the LNAPL will spread laterally in a radial fashion as well as penetrate vertically downward into the saturated zone, displacing water to some depth proportional to the driving force of the vertical LNAPL column (or LNAPL head). The vertical penetration of LNAPL into the saturated zone will continue to occur as long as the downward force produced by the LNAPL head or pressure from the LNAPL release exceeds the counteracting forces produced by the resistance of the soil matrix and the buoyancy resulting from the density difference between LNAPL and groundwater.''<ref name="LNAPL-3"/></blockquote>
+
Toxicity assessments are ongoing for the following PFAS:
 +
*Perfluorononanoic acid (PFNA)
 +
*Perfluorodecanoic acid (PFDA)  
  
While the release at the surface is still active, the LNAPL body can expand until the LNAPL addition rate is equal to the NSZD depletion rate.  However, once the release at the surface is stopped, the expansion will stop relatively quickly, and the LNAPL body will stabilize. Figure 2a shows a conceptual depiction of this release scenario and Figure 2b shows a sand tank experiment of an LNAPL release.  Because of the buoyancy effects, LNAPL releases that reach the water table will form LNAPL bodies that “like icebergs, are partially above and below the water table”.<ref name="Sale2018"/>
+
It is important to note human health toxicity criteria for inhalation of PFAS are not included in the Final Toxicological Reviews and are not currently available.  
 +
In addition to IRIS, state agencies have developed peer-reviewed provisional toxicity values that have been incorporated into USEPA’s RSLs, which are updated biannually. These values have not been reviewed by or incorporated into IRIS.  
  
==Key Implications of the LNAPL Conceptual Site Model==
+
With respect to ecological toxicity, effects on reproduction, growth, and development of avian and mammalian wildlife have been documented in controlled laboratory studies of exposures of standard toxicological test species (e.g., mice, quail) to PFAS. Many of these studies have been reviewed<ref name="ConderEtAl2020"> Conder, J., Arblaster, J., Larson, E., Brown, J., Higgins, C., 2020. Guidance for Assessing the Ecological Risks of PFAS to Threatened and Endangered Species at Aqueous Film Forming Foam-Impacted Sites. Strategic Environmental Research and Development Program (SERDP) Project ER 18-1614. [https://serdp-estcp.mil/projects/details/3f890c9b-7f72-4303-8d2e-52a89613b5f6 Project Website]&nbsp; [[Media: ER18-1614_Guidance.pdf | Guidance Document]]</ref><ref name="GobasEtAl2020">Gobas, F.A.P.C., Kelly, B.C., Kim, J.J., 2020. Final Report: A Framework for Assessing Bioaccumulation and Exposure Risks of PFAS in Threatened and Endangered Species on AFFF-Impacted Sites. SERDP Project ER18-1502. [https://serdp-estcp.mil/projects/details/09c93894-bc73-404a-8282-51196c4be163 Project Website]&nbsp; [[Media: ER18-1502_Final.pdf | Final Report]]</ref><ref name="Suski2020">Suski, J.G., 2020. Investigating Potential Risk to Threatened and Endangered Species from Per- and Polyfluoroalkyl Substances (PFAS) on Department of Defense (DoD) Sites. SERDP Project ER18-1626. [https://serdp-estcp.mil/projects/details/c328f8e3-95a4-4820-a0d4-ef5835134636 Project Website]&nbsp; [[Media: ER18-1626_Final.pdf | Report.pdf]]</ref><ref name="ZodrowEtAl2021a">Zodrow, J.M., Frenchmeyer, M., Dally, K., Osborn, E., Anderson, P. and Divine, C., 2021. Development of Per and Polyfluoroalkyl Substances Ecological Risk-Based Screening Levels. Environmental Toxicology and Chemistry, 40(3), pp. 921-936. [https://doi.org/10.1002/etc.4975 doi: 10.1002/etc.4975]&nbsp;&nbsp; [[Media: ZodrowEtAl2021a.pdf | Open Access Article]]</ref> to derive ecological Toxicity Reference Values (TRVs). TRVs can be used alongside exposure information and other considerations to assess ecological risk. Avian and mammalian wildlife receptors are generally expected to have the highest risks due to PFAS exposure. Direct toxicity to aquatic life, such as fish and invertebrates, from exposure to sediment and surface water also occurs, though concentrations in water associated with adverse effects to aquatic life are generally higher than those that could result in adverse effects to aquatic-dependent wildlife. Soil invertebrates and plants are less sensitive to PFAS when compared to terrestrial wildlife, with risk-based PFAS concentrations in soil being much higher than those associated with potential effects to terrestrial wildlife<ref name="ZodrowEtAl2021a"/>.
The nature of multi-phase flow processes in porous media (e.g., the interaction of LNAPL, water, and air in the pore spaces of an unconsolidated aquifer) has several important implications for environmental professionals in areas including interpretation of LNAPL thickness in monitoring wells and assessment of the long-term risk associated with LNAPL source zones. A few of the key implications are described below.
 
  
===Three States of LNAPL===
+
==PFAS Screening Levels for Human Health and Ecological Risk Assessments==
LNAPL can be found in the subsurface in three different states:
+
===Human Health Screening Levels===
 +
Human health screening levels for PFAS have been modified multiple times over the last decade and, in the United States, are currently available for drinking water and soil exposures as Maximum Contaminant Levels (MCLs) and USEPA Regional Screening Levels (RSLs). USEPA finalized a National Primary Drinking Water Regulation (NPDWR) for six PFAS<ref name="USEPA2024b"/>:
 +
*Perfluorooctanoic acid (PFOA)
 +
*Perfluorooctane sulfonic acid (PFOS)
 +
*Perfluorohexane sulfonic acid (PFHxS)
 +
*Perfluorononanoic acid (PFNA)
 +
*Hexafluoropropylene oxide dimer acid (HFPO-DA, commonly known as GenX chemicals)
 +
*Perfluorobutane sulfonic acid (PFBS)
  
# '''Residual LNAPL''' is trapped and immobile but can undergo composition and phase changes and generate dissolved hydrocarbon plumes in saturated zones and/or vapors in unsaturated zones. The fraction of the total pore space occupied by this discontinuous LNAPL is referred to as the residual saturation, with other phases such as water and air in the remainder of the pore space.
+
MCLs are enforceable drinking water standards based on the most recently available toxicity information that consider available treatment technologies and costs. The MCLs for PFAS include a Hazard Index of 1 for combined exposures to four PFAS. RSLs are developed for use in risk assessments and include soil and tap water screening levels for multiple PFAS. Soil RSLs are based on residential/unrestricted and commercial/industrial land uses, and calculations of site-specific RSLs are available.   
# '''Mobile LNAPL''' is LNAPL at greater than the residual saturation. Mobile LNAPL can accumulate in a well and is potentially recoverable, but is not migrating (i.e., the LNAPL body is not expanding).
 
# '''Migrating LNAPL''' is LNAPL at greater than the residual concentration which is observed to expand into previously non-impacted locations over time (e.g., LNAPL appears in a monitoring well that had previously been clean).   
 
  
These three LNAPL states can cause different concerns and in some cases require different remediation goals.  
+
Internationally, Canada and the European Union have also promulgated drinking water standards for select PFAS. However, large discrepancies exist among the various regulatory organizations, largely due to the different effect endpoints and exposure doses being used to calculate risk-based levels. The PFAS guidance from the Interstate Technology and Regulatory Council (ITRC) in the US includes a regularly updated compilation of screening values for PFAS and is available on their PFAS website<ref name="ITRC2023">Interstate Technology and Regulatory Council (ITRC) 2023. PFAS Technical and Regulatory Guidance Document. [https://pfas-1.itrcweb.org/ ITRC PFAS Website]</ref>: https://pfas-1.itrcweb.org.
  
===LNAPL “Apparent Thickness” is a Poor Metric for Risk Management===
+
===Ecological Screening Levels===
[[File:Newell1w2Fig3.png |thumb|left|600px| Figure 3.  Five LNAPL Thickness Scenarios for five different physical settings<ref name="Sale2018"/>.]]
+
Most peer-reviewed literature and regulatory-based environmental quality benchmarks have been developed using data for PFOS and PFOA; however, other select PFAAs have been evaluated for potential effects to aquatic receptors<ref name="ITRC2023"/><ref name="ZodrowEtAl2021a"/><ref name="ConderEtAl2020"/>. USEPA has developed water quality criteria for aquatic life<ref name="USEPA2022"> United States Environmental Protection Agency (USEPA), 2022. Fact Sheet: Draft 2022 Aquatic Life Ambient Water Quality Criteria for Perfluorooctanoic acid (PFOA) and Perfluorooctane Sulfonic Acid (PFOS)). Office of Water, EPA 842-D-22-005. [[Media: USEPA2022.pdf | Fact Sheet]]</ref><ref name="USEPA2024c">United States Environmental Protection Agency (USEPA), 2024. Final Freshwater Aquatic Life Ambient Water Quality Criteria and Acute Saltwater Aquatic Life Benchmark for Perfluorooctanoic Acid (PFOA). Office of Water, EPA-842-R-24-002. [[Media: USEPA2024c.pdf | Report.pdf]]</ref><ref name="USEPA2024d">United States Environmental Protection Agency (USEPA), 2024. Final Freshwater Aquatic Life Ambient Water Quality Criteria and Acute Saltwater Aquatic Life Benchmark for Perfluorooctane Sulfonate (PFOS). Office of Water, EPA-842-R-24-003. [[Media: USEPA2024d.pdf | Report.pdf]]</ref> for PFOA and PFOS. Following extensive reviews of the peer-reviewed literature, Zodrow ''et al.''<ref name="ZodrowEtAl2021a"/> used the USEPA Great Lakes Initiative methodology<ref>United States Environmental Protection Agency (USEPA), 2012. Water Quality Guidance for the Great Lakes System. Part 132. [https://www.govinfo.gov/app/details/CFR-2013-title40-vol23/CFR-2013-title40-vol23-part132 Government Website]&nbsp; [[Media: CFR-2013-title40-vol23-part132.pdf | Part132.pdf]]</ref> to calculate acute and chronic screening levels for aquatic life for 23 PFAS. The Argonne National Laboratory has also developed Ecological Screening Levels for multiple PFAS<ref name="GrippoEtAl2024">Grippo, M., Hayse, J., Hlohowskyj, I., Picel, K., 2024. Derivation of PFAS Ecological Screening Values - Update. Argonne National Laboratory Environmental Science Division. [[Media: GrippoEtAl2024.pdf | Report.pdf]]</ref>. In contrast to surface water aquatic life benchmarks, sediment benchmark values are limited. For terrestrial systems, screening levels for direct exposure of soil plants and invertebrates to PFAS in soils have been developed for multiple AFFF-related PFAS<ref name="ConderEtAl2020"/><ref name="ZodrowEtAl2021a"/>, and the Canadian Council of Ministers of Environment developed several draft thresholds protective of direct toxicity of PFOS in soil<ref>Canadian Council of Ministers of the Environment (CCME), 2021. Canadian Soil and Groundwater Quality Guidelines for the Protection of Environmental and Human Health, Perfluorooctane Sulfonate (PFOS). [[Media: CCME2018.pdf | Open Access Government Document]]</ref>.  
[[File:Newell1w2Fig4.png |thumb|350px| Figure 4. Apparent LNAPL thickness versus LNAPL transmissivity, showing no correlation<ref name="Hawthorne2015">Hawthorne, J.M., 2015.  Nationwide (USA) Statistical Analysis of LNAPL Transmissivity, in: R. Darlington and A.C. Barton (Chairs), Bioremediation and Sustainable Environmental Technologies—2015. Third International Symposium on Bioremediation and Sustainable Environmental Technologies (Miami, FL), page C-017, Battelle Memorial Institute, Columbus, OH. www.battelle.org/biosymp  [[Media:Hawthorne2015.pdf | Abstract.pdf]]</ref>.]]
 
LNAPL thickness in monitoring wells is often referred to as the “apparent LNAPL thickness” because at first glance this LNAPL thickness might be expected to be the thickness of LNAPL that is in the formation, but in reality it is not well correlated with the thickness of the LNAPL zone in the subsurface for several reasons.
 
  
First, different physical settings can produce different LNAPL thicknesses in monitoring wells. Sale et al. (2018) show five different scenarios that produce very different responses with regard to apparent LNAPL thickness (Figure 3). Scenario A shows an LNAPL apparent thickness in the monitoring well that is at static equilibrium with LNAPL in an unconfined aquifer. Scenario B, while also an unconfined aquifer, is comprised of very fine-grained soils that cause the LNAPL thickness in the well to be much higher than in Scenario A. In Scenario C, the LNAPL has accumulated under a confined unit (likely due to an underground release of LNAPL below the confining unit), and the LNAPL has risen above the groundwater potentiometric surface, leading to a large (and misleading) LNAPL thickness in the monitoring well. Scenario D, LNAPL in a perched unit, also shows a very different response from the other scenarios. Scenario E, LNAPL in fractured system, shows that the LNAPL can penetrate below the water table, and that LNAPL thickness in a well is dependent on the pressure from accumulation of LNAPL in the fractures<ref name="Sale2018"/>.
+
Wildlife screening levels for abiotic media are back-calculated from food web models developed for representative receptors. Both Zodrow ''et al.''<ref name="ZodrowEtAl2021a"/> and Grippo ''et al.''<ref name="GrippoEtAl2024"/> include the development of risk-based screening levels for wildlife. The Michigan Department of Community Health<ref>Dykema, L.D., 2015. Michigan Department of Community Health Final Report, USEPA Great Lakes Restoration Initiative (GLRI) Project, Measuring Perfluorinated Compounds in Michigan Surface Waters and Fish. Grant GL-00E01122. [https://www.michigan.gov/documents/mdch/MDCH_GL-00E01122-0_Final_Report_493494_7.pdf Free Download]&nbsp; [[Media: MDCH_Geart_Lakes_PFAS.pdf | Report.pdf]]</ref> derived a provisional PFOS surface water value for avian and mammalian wildlife. In California, the San Francisco Bay Regional Water Quality Control Board developed terrestrial habitat soil ecological screening levels based on values developed in Zodrow ''et al.''<ref name="ZodrowEtAl2021a"/>. For PFOS only, a dietary screening level (i.e. applicable to the concentration of PFAS measured in dietary items) has been developed for mammals at 4.6 micrograms per kilogram (μg/kg) wet weight (ww), and for avians at 8.2 μg/kg ww<ref>Environment and Climate Change Canada, 2018. Federal Environmental Quality Guidelines, Perfluorooctane Sulfonate (PFOS). [[Media: ECCC2018.pdf | Repoprt.pdf]]</ref>.
  
Second, apparent LNAPL thickness is affected by changes in the groundwater surface elevation (or water table). Generally, when groundwater elevations are higher than typical, the LNAPL thickness in monitoring wells will decrease or go to zero because the groundwater will redistribute any mobile LNAPL into what previously was the unsaturated zone. During lower groundwater elevation periods, much more of the LNAPL will occur as a continuous phase near the water table, leading to higher LNAPL thicknesses in wells.
+
==Approaches for Evaluating Exposures and Effects in AFFF Site Environmental Risk Assessment: Human Health==
 +
Exposure pathways and effects for select PFAS are well understood, such that standard human health risk assessment approaches can be used to quantify risks for populations relevant to a site. Human health exposures via drinking water have been the focus in risk assessments and investigations at PFAS sites<ref>Post, G.B., Cohn, P.D., Cooper, K.R., 2012. Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: A critical review of recent literature. Environmental Research, 116, pp. 93-117. [https://doi.org/10.1016/j.envres.2012.03.007 doi: 10.1016/j.envres.2012.03.007]</ref><ref>Guelfo, J.L., Marlow, T., Klein, D.M., Savitz, D.A., Frickel, S., Crimi, M., Suuberg, E.M., 2018. Evaluation and Management Strategies for Per- and Polyfluoroalkyl Substances (PFASs) in Drinking Water Aquifers: Perspectives from Impacted U.S. Northeast Communities. Environmental Health Perspectives,126(6), 13 pages. [https://doi.org/10.1289/EHP2727 doi: 10.1289/EHP2727]&nbsp; [[Media: GuelfoEtAl2018.pdf | Open Access Article]]</ref>. Risk assessment approaches for PFAS in drinking water follow typical, well-established drinking water risk assessment approaches for chemicals as detailed in regulatory guidance documents for various jurisdictions.  
  
Overall, LNAPL thickness measurements are useful for delineating the extent of mobile LNAPL in the saturated zone and can provide useful data for understanding the vertical distribution of LNAPL in the formation<ref name="Hawthorne2011">Hawthorne, J.M., 2011. Diagnostic Gauge Plots—Simple Yet Powerful LCSM Tools. Applied NAPL Science Review (ANSR), 1(2). [http://naplansr.com/diagnostic-gauge-plots-volume-1-issue-2-february-2011/ Website] [[Media:Hawthorne2011.pdf | Report.pdf]]</ref><ref name="Kirkman2013">Kirkman, A.J., Adamski, M., and Hawthorne, M., 2013. Identification and Assessment of Confined and Perched LNAPL Conditions. Groundwater Monitoring and Remediation, 33 (1), pp. 75–86. [https://doi.org/10.1111/j.1745-6592.2012.01412.x  DOI:10.1111/j.1745-6592.2012.01412.x]</ref>. But LNAPL thickness by itself is a very poor indicator of the feasibility of LNAPL recovery<ref name="LNAPL-2">Interstate Technology and Regulatory Council (ITRC), 2009. Evaluating LNAPL Remedial Technologies for Achieving Project Goals. LNAPL-2. ITRC, LNAPLs Team, Washington, DC. www.itrcweb.org  [[Media:ITRC-LNAPL-2.pdf | Report.pdf]]</ref><ref name="Hawthorne2015"/> (see [[NAPL Mobility]]) (Figure 4).  Because there is little correlation between apparent LNAPL thickness and LNAPL mobility, there is also little correlation between apparent thickness and the risk to receptors from the LNAPL.
+
Incidental exposures to soil and dusts for PFAS can occur during a variety of soil disturbance activities, such as gardening and digging, hand-to-mouth activities, and intrusive groundwork by industrial or construction workers. As detailed by the ITRC<ref name="ITRC2023"/>, many US states and USEPA have calculated risk-based screening levels for these soil and drinking water pathways (and many also include dermal exposures to soils) using well-established risk assessment guidance.  
  
===Complete LNAPL Remediation Is Very Challenging===
+
Field and laboratory studies have shown that some PFCAs and PFSAs bioaccumulate in fish and other aquatic life at rates that could result in relevant dietary PFAS exposures for consumers of fish and other seafood<ref>Martin, J.W., Mabury, S.A., Solomon, K.R., Muir, D.C., 2003. Dietary accumulation of perfluorinated acids in juvenile rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry, 22(1), pp.189-195. [https://doi.org/10.1002/etc.5620220125 doi: 10.1002/etc.5620220125]</ref><ref>Martin, J.W., Mabury, S.A., Solomon, K.R., Muir, D.C., 2003. Bioconcentration and tissue distribution of perfluorinated acids in rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry, 22(1), pp.196-204. [https://doi.org/10.1002/etc.5620220126 doi: 10.1002/etc.5620220126]</ref><ref>Chen, F., Gong, Z., Kelly, B.C., 2016. Bioavailability and bioconcentration potential of perfluoroalkyl-phosphinic and -phosphonic acids in zebrafish (Danio rerio): Comparison to perfluorocarboxylates and perfluorosulfonates. Science of The Total Environment, 568, pp. 33-41. [https://doi.org/10.1016/j.scitotenv.2016.05.215 doi: 10.1016/j.scitotenv.2016.05.215]</ref><ref>Fang, S., Zhang, Y., Zhao, S., Qiang, L., Chen, M., Zhu, L., 2016. Bioaccumulation of per fluoroalkyl acids including the isomers of perfluorooctane sulfonate in carp (Cyprinus carpio) in a sediment/water microcosm. Environmental Toxicology and Chemistry, 35(12), pp. 3005-3013. [https://doi.org/10.1002/etc.3483 doi: 10.1002/etc.3483]</ref><ref>Bertin, D., Ferrari, B.J.D. Labadie, P., Sapin, A., Garric, J., Budzinski, H., Houde, M., Babut, M., 2014. Bioaccumulation of perfluoroalkyl compounds in midge (Chironomus riparius) larvae exposed to sediment. Environmental Pollution, 189, pp. 27-34. [https://doi.org/10.1016/j.envpol.2014.02.018  doi: 10.1016/j.envpol.2014.02.018]</ref><ref>Bertin, D., Labadie, P., Ferrari, B.J.D., Sapin, A., Garric, J., Geffard, O., Budzinski, H., Babut. M., 2016. Potential exposure routes and accumulation kinetics for poly- and perfluorinated alkyl compounds for a freshwater amphipod: Gammarus spp. (Crustacea). Chemosphere, 155, pp. 380-387. [https://doi.org/10.1016/j.chemosphere.2016.04.006 doi: 10.1016/j.chemosphere.2016.04.006]</ref><ref>Dai, Z., Xia, X., Guo, J., Jiang, X., 2013. Bioaccumulation and uptake routes of perfluoroalkyl acids in Daphnia magna. Chemosphere, 90(5), pp.1589-1596. [https://doi.org/10.1016/j.chemosphere.2012.08.026 doi: 10.1016/j.chemosphere.2012.08.026]</ref><ref>Prosser, R.S., Mahon, K., Sibley, P.K., Poirier, D., Watson-Leung, T. 2016. Bioaccumulation of perfluorinated carboxylates and sulfonates and polychlorinated biphenyls in laboratory-cultured Hexagenia spp., Lumbriculus variegatus and Pimephales promelas from field-collected sediments. Science of The Total Environment, 543(A), pp. 715-726. [https://doi.org/10.1016/j.scitotenv.2015.11.062 doi: 10.1016/j.scitotenv.2015.11.062]</ref><ref>Rich, C.D., Blaine, A.C., Hundal, L., Higgins, C., 2015. Bioaccumulation of Perfluoroalkyl Acids by Earthworms (Eisenia fetida) Exposed to Contaminated Soils. Environmental Science and Technology, 49(2) pp. 881-888. [https://doi.org/10.1021/es504152d doi: 10.1021/es504152d]</ref><ref>Muller, C.E., De Silva, A.O., Small, J., Williamson, M., Wang, X., Morris, A., Katz, S., Gamberg, M., Muir, D.C.G., 2011. Biomagnification of Perfluorinated Compounds in a Remote Terrestrial Food Chain: Lichen–Caribou–Wolf. Environmental Science and Technology, 45(20), pp. 8665-8673. [https://doi.org/10.1021/es201353v doi: 10.1021/es201353v]</ref>. In addition to fish, terrestrial wildlife can accumulate contaminants from impacted sites, resulting in potential exposures to consumers of wild game<ref name="ConderEtAl2021"/>. Additionally, exposures can occur though consumption of homegrown produce or agricultural products that originate from areas irrigated with PFAS-impacted groundwater, or that are amended with biosolids that contain PFAS, or that contain soils that were directly affected by PFAS releases<ref>Brown, J.B, Conder, J.M., Arblaster, J.A., Higgins, C.P.,  2020. Assessing Human Health Risks from Per- and Polyfluoroalkyl Substance (PFAS)-Impacted Vegetable Consumption: A Tiered Modeling Approach. Environmental Science and Technology, 54(23), pp. 15202-15214. [https://doi.org/10.1021/acs.est.0c03411 doi: 10.1021/acs.est.0c03411]&nbsp; [[Media: BrownEtAl2020.pdf | Open Access Article]]</ref>. Multiple studies have found PFAS can be taken up by plants from soil porewater<ref>Blaine, A.C., Rich, C.D., Hundal, L.S., Lau, C., Mills, M.A., Harris, K.M., Higgins, C.P., 2013. Uptake of Perfluoroalkyl Acids into Edible Crops via Land Applied Biosolids: Field and Greenhouse Studies. Environmental Science and Technology, 47(24), pp. 14062-14069. [https://doi.org/10.1021/es403094q doi: 10.1021/es403094q]&nbsp; [https://www.epa.gov/sites/production/files/2019-11/documents/508_pfascropuptake.pdf Free Download from epa.gov]</ref><ref>Blaine, A.C., Rich, C.D., Sedlacko, E.M., Hyland, K.C., Stushnoff, C., Dickenson, E.R.V., Higgins, C.P., 2014. Perfluoroalkyl Acid Uptake in Lettuce (Lactuca sativa) and Strawberry (Fragaria ananassa) Irrigated with Reclaimed Water. Environmental Science and Technology, 48(24), pp. 14361-14368. [https://doi.org/10.1021/es504150h doi: 10.1021/es504150h]</ref><ref>Ghisi, R., Vamerali, T., Manzetti, S., 2019. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review. Environmental Research, 169, pp. 326-341. [https://doi.org/10.1016/j.envres.2018.10.023 doi: 10.1016/j.envres.2018.10.023]</ref>, and livestock can accumulate PFAS from drinking water and/or feed<ref>van Asselt, E.D., Kowalczyk, J., van Eijkeren, J.C.H., Zeilmaker, M.J., Ehlers, S., Furst, P., Lahrssen-Wiederhold, M., van der Fels-Klerx, H.J., 2013. Transfer of perfluorooctane sulfonic acid (PFOS) from contaminated feed to dairy milk. Food Chemistry, 141(2), pp.1489-1495. [https://doi.org/10.1016/j.foodchem.2013.04.035 doi: 10.1016/j.foodchem.2013.04.035]</ref>. Thus, when PFAS are present in surface water bodies where fishing or shellfish harvesting occurs or terrestrial areas where produce is grown or game is hunted, the bioaccumulation of PFAS into dietary items can be an important pathway for human exposure.
Sale et al. (2018) described the problems with attaining complete LNAPL remediation this way:
 
  
<blockquote>''Experience of the last few decades has taught us: 1) our best efforts often leave some LNAPL in place, and 2) the remaining LNAPL often sustains exceedances of drinking water standards in release areas for extended periods. Entrapment of LNAPLs at residual saturations is a primary factor constraining our success. Other challenges include the low solubility of LNAPL, the complexity of the subsurface geologic environment, access limitations associated with surface structures, and concentration goals that are often three to five orders of magnitude less than typical initial concentrations within LNAPL zones.''<ref name="Sale2018"/></blockquote>
+
PFAAs such as PFOA and PFOS are not expected to volatilize from PFAS-impacted environmental media<ref name="USEPA2016a"/><ref name="USEPA2016b"/> such as soil and groundwater, which are the primary focus of most site-specific risk assessments. In contrast to non-volatile PFAAs, fluorotelomer alcohols (FTOHs) are among the more widely studied of the volatile PFAS. FTOHs are transient in the atmosphere with a lifetime of 20 days<ref>Ellis, D.A., Martin, J.W., De Silva, A.O., Mabury, S.A., Hurley, M.D., Sulbaek Andersen, M.P., Wallington, T.J., 2004. Degradation of Fluorotelomer Alcohols:  A Likely Atmospheric Source of Perfluorinated Carboxylic Acids. Environmental Science and Technology, 38(12), pp. 3316-3321. [https://doi.org/10.1021/es049860w doi: 10.1021/es049860w]</ref>. At most AFFF sites under evaluation, AFFF releases have occurred many years before such that FTOH may no longer be present. As such, the current assumption is that volatile PFAS, such as FTOHs historically released at the site, will have transformed to stable, low-volatility PFAS, such as PFAAs in soil or groundwater, or will they have diffused to the outdoor atmosphere. There is no evidence that FTOHs or other volatile PFAS are persistent in groundwater or soils such that they present an indoor vapor intrusion pathway risk concern as observed for chlorinated solvents. Ongoing research continues for the vapor pathway<ref name="ITRC2023"/>.
  
In particular, the discontinuous residual LNAPL cannot be removed (or recovered) by pumping, and ''in situ'' remediation is expensive and not completely effective (see [[LNAPL Remediation Technologies]]). However, many regulatory programs require “LNAPL recovery to the extent practicable.”  The lack of quantitative metrics and the lack of correlation between apparent LNAPL thicknesses and subsurface LNAPL makes this a problematic requirement in many cases and the ITRC (2018) cautions “Thickness or concentration data alone may not provide a sound basis for defining the point at which a cleanup objective is achieved.<ref name="LNAPL-3"/> However, Sale et al. (2018) describe metrics such as LNAPL transmissivity, limited/infrequent well thicknesses, decline curve analysis, asymptotic analysis, and comparison to NSZD rates that can be used to determine when LNAPL has been removed the extent practicable<ref name="Sale2018"/>.
+
General and site-specific human health exposure pathways and risk assessment methods as outlined by USEPA<ref>United States Environmental Protection Agency (USEPA), 1989. Risk Assessment Guidance for Superfund: Volume I, Human Health Evaluation Manual (Part A). Office of Solid Waste and Emergency Response, EPA/540/1-89/002. [https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=10001FQY.txt Free Download]&nbsp; [[Media: USEPA1989.pdf | Report.pdf]]</ref><ref name="USEPA1997">United States Environmental Protection Agency (USEPA), 1997. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments, Interim Final. Office of Solid Waste and Emergency Response, EPA 540-R-97-006. [http://semspub.epa.gov/src/document/HQ/157941 Free Download]&nbsp; [[Media: EPA540-R-97-006.pdf | Report.pdf]]</ref> can be applied to PFAS risk assessments for which human health toxicity values have been developed. Additionally, for risk assessments with dietary exposures of PFAS, standard risk assessment food web modeling can be used to develop initial estimates of dietary concentrations which can be confirmed with site-specific tissue sampling programs.
  
===Attenuation Processes are Active and Important===
+
==Approaches for Evaluating Exposures and Effects in AFFF Site Environmental Risk Assessment: Ecological==
Both LNAPL source zones and their dissolved phase hydrocarbon plumes are attenuated by biodegradation and other attenuation processIn the source zone, this attenuation is called [[Natural Source Zone Depletion (NSZD)]] (see also [[Natural Attenuation in Source Zone and Groundwater Plume - Bemidji Crude Oil Spill]]).  In the dissolved plume it is called [[Monitored Natural Attenuation (MNA)]] (see also  [[Biodegradation - Hydrocarbons]]).  These processes generally limit the length of dissolved phase hydrocarbon plumes to a few hundred feet<ref name="Newell1998">Newell, C.J., and Connor, J.A., 1998. Characteristics of Dissolved Hydrocarbon Plumes: Results from Four Studies, Version 1.1. American Petroleum Institute, Soil/Groundwater Technical Task Force, Washington, DC. [https://www.enviro.wiki/index.php?title=File:Newell-1998-chararacterization_of_dissolved_Pet._Hydro_Plumes.pdf  Report.pdf]</ref> via processes that have been well known and understood since the mid-1990s.
+
Information available currently on exposures and effects of PFAS in ecological receptors indicate that the PFAS ecological risk issues at most sites are primarily associated with risks to vertebrate wildlifeAvian and mammalian wildlife are relatively sensitive to PFAS, and dietary intake via bioaccumulation in terrestrial and aquatic food webs can result in exposures that are dominated by the more accumulative PFAS<ref name="LarsonEtAl2018">Larson, E.S., Conder, J.M., Arblaster, J.A., 2018. Modeling avian exposures to perfluoroalkyl substances in aquatic habitats impacted by historical aqueous film forming foam releases. Chemosphere, 201, pp. 335-341. [https://doi.org/10.1016/j.chemosphere.2018.03.004 doi: 10.1016/j.chemosphere.2018.03.004]</ref><ref name="ConderEtAl2020"/><ref name="ZodrowEtAl2021a"/>. Direct toxicity to aquatic life (e.g., fish, pelagic life, benthic invertebrates, and aquatic plants) can occur from exposure to sediment and surface water at effected sites.  For larger areas, surface water concentrations associated with adverse effects to aquatic life are generally higher than those that could result in adverse effects to aquatic-dependent wildlife. Soil invertebrates and plants are generally less sensitive, with risk-based concentrations in soil being much higher than those associated with potential effects to terrestrial wildlife<ref name="ZodrowEtAl2021a"/>.
  
However, NSZD is “by far, the biggest new idea for LNAPLs in the last decade.”<ref name="Sale2018"/>  Originally, LNAPL bodies were thought to attenuate very slowly via dissolution and volatilization. In 2006, it was discovered that NSZD rates are orders of magnitude higher than originally thought, largely due to direct biodegradation of LNAPL constituents to methane and carbon dioxide by methanogenic consortiums of naturally occurring bacteria<ref name="Lundegard2006">Lundegard, P.D., and Johnson, P.C., 2006. Source Zone Natural Attenuation at Petroleum Spill Sites—II: Application to a Former Oil Field. Groundwater Monitoring and Remediation. 26(4), pp. 93-106.  [ https://doi.org/10.1111/j.1745-6592.2006.00115.x  DOI: 10.1111/j.1745-6592.2006.00115.x]</ref><ref name="Garg2017">Garg, S., Newell, C., Kulkarni, P., King, D., Adamson, D.T., Irianni Renno, M., and Sale, T., 2017. Overview of Natural Source Zone Depletion: Processes, Controlling Factors, and Composition Change. Groundwater Monitoring and Remediation, 37(3), pp. 62-81. [https://doi.org/10.1111/gwmr.12219 DOI:  10.1111/gwmr.12219] [[Media:Garg2017gwmr.12219.pdf | Report.pdf]]</ref>.  NSZD processes play an important role in risk mitigation and the long-term stability of LNAPL bodies<ref name="Mahler2012">
+
Aquatic life are exposed to PFAS through direct exposure in surface water and sediment. Ecological risk assessment approaches for PFAS for aquatic life follow standard risk assessment approaches. The evaluation of potential risks for aquatic life with direct exposure to PFAS in environmental media relies on comparing concentrations in external exposure media to protective, media-specific benchmarks, including the aquatic life risk-based screening levels discussed above<ref name="ZodrowEtAl2021a"/><ref name="USEPA2024a">United States Environmental Protection Agency (USEPA), 2024. National Recommended Water Quality Criteria - Aquatic Life Criteria Table. [https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table USEPA Website]</ref>.
Mahler, N., Sale, T., and Lyverse, M., 2012. A Mass Balance Approach to Resolving LNAPL Stability. Groundwater, 50(6), pp 861-871.  [https://doi.org/10.1111/j.1745-6584.2012.00949.x DOI: 10.1111/j.1745-6584.2012.00949.x]</ref><ref name="LNAPL-3"/>.
 
  
===Risk from LNAPL Source Zones Diminishes Over Time===
+
When an area at the point of PFAS release is an industrial setting which does not feature favorable habitats for terrestrial and aquatic-dependent wildlife, the transport mechanisms may allow PFAS to travel offsite. If offsite or downgradient areas contain ecological habitat, then PFAS transported to these areas are expected to pose the highest risk potential to wildlife, particularly those areas that feature aquatic habitat<ref>Ahrens, L., Bundschuh, M., 2014. Fate and effects of poly- and perfluoroalkyl substances in the aquatic environment: A review. Environmental Toxicology and Chemistry, 33(9), pp. 1921-1929. [https://doi.org/10.1002/etc.2663 doi: 10.1002/etc.2663]&nbsp; [[Media: AhrensBundschuh2014.pdf | Open Access Article]]</ref><ref name="LarsonEtAl2018"/>.
At Early Stage LNAPL sites, the expansion of the LNAPL body is a risk that needs to be addressed. Fortunately, this type of site is relatively rare. For Middle and Late Stage sites, the primary risks are associated with phase changes (dissolution of the LNAPL forming a dissolved plume and volatilization from the LNAPL or dissolved plume forming hydrocarbon vapors). As described above, MNA can often control the dissolved phase (see [[Monitored Natural Attenuation (MNA) of Fuels]]), while aerobic biodegradation in the unsaturated zone greatly reduces the vapor intrusion risk from hydrocarbon vapors (see [[Vapor Intrusion - Separation Distances from Petroleum Sources]]).
 
  
Understanding LNAPL body mobility and stability is important to understand the potential risks posed by LNAPL. The relative magnitude of LNAPL mobility can be determined by measuring the LNAPL transmissivity (see [[NAPL Mobility]]).  If the transmissivity is below a threshold level (in the range of 0.1 to 0.8 ft2/day) then the LNAPL likely cannot be recovered efficiently by pumping, but above this transmissivity level recovery is feasible<ref name="LNAPL-3"/>.  Michigan’s LNAPL guidance states “if the NAPL has a transmissivity greater than 0.5 ft2/day, it is likely that the NAPL can be recovered in a cost-effective and efficient manner unless a demonstration is made to show otherwise.”  Kansas LNAPL guidance requires “recovery of all LNAPL with a transmissivity greater than 0.8 ft2/day that can be recovered in an efficient, cost-effective manner.”<ref name="LNAPL-3"/>.  The stability of the entire LNAPL body can be evaluated using statistical tools to determine if migration of LNAPL is occurring<ref name="Hawthorne2013">Hawthorne, J.M., Stone, C.D., Helsel, D., 2013. LNAPL Body Stability Part 2: Daughter Plume Stability via Spatial Moments Analysis. Applied NAPL Science Review (ANSR), 3(5).  [http://naplansr.com/lnapl-body-stability-part-2-daughter-plume-stability-via-spatial-moments-analysis-volume-3-issue-5-september-2013/ Website] [[Media:Hawthorne2013.pdf | Report.pdf]]</ref>.
+
Wildlife receptors, specifically birds and mammals, are typically exposed to PFAS through uptake from dietary sources such as plants and invertebrates, along with direct soil ingestion during foraging activities. Dietary intake modeling typical for ecological risk assessments is the recommended approach for an evaluation of potential risks to wildlife species where PFAS exposure occurs primarily via dietary uptake from bioaccumulation pathways. Dietary intake modeling uses relevant exposure factors for each receptor group (terrestrial birds, terrestrial mammals, aquatic-dependent birds, and aquatic mammals) to determine a total daily intake (TDI) of PFAS via all potential exposure pathways. This approach requires determination of concentrations of PFAS in dietary items, which can be obtained by measuring PFAS in biota at sites or by using food web models to predict concentrations in biota using measured concentrations of PFAS in soil, sediment, or surface water. Food web models use bioaccumulation metrics such as bioaccumulation factors (BAFs) and biomagnification factors (BMFs) with measurements of PFAS in abiotic media to estimate concentrations in dietary items, including plants and benthic or pelagic invertebrates, to model wildlife exposure and calculate TDI. Once site-specific TDI values are calculated, they are compared to known TRVs identified from toxicity data with exposure doses associated with a lack of adverse effects (termed no observed adverse effect level [NOAEL]) or low adverse effects (termed lowest observed adverse effect level [LOAEL]), per standard risk assessment practice<ref name="USEPA1997"/>.
  
==Overview of Modern LNAPL Conceptual Site Model==
+
Recently, Conder ''et al.''<ref name="ConderEtAl2020"/>, Gobas ''et al.''<ref name="GobasEtAl2020"/>, and Zodrow ''et al.''<ref name="ZodrowEtAl2021a"/> compiled bioaccumulation modeling parameters and approaches for terrestrial and aquatic food web modeling of a variety of commonly detected PFAS at AFFF sites. There are also several sources of TRVs which can be relied upon for estimating TDI values<ref name="ConderEtAl2020"/><ref name="GobasEtAl2020"/><ref name="ZodrowEtAl2021a"/><ref>Newsted, J.L., Jones, P.D., Coady, K., Giesy, J.P., 2005. Avian Toxicity Reference Values for Perfluorooctane Sulfonate. Environmental Science and Technology, 39(23), pp. 9357-9362. [https://doi.org/10.1021/es050989v doi: 10.1021/es050989v]</ref><ref name="Suski2020"/>. In general, the highest risk for PFAS is expected for smaller insectivore and omnivore receptors (e.g., shrews and other small rodents, small nonmigratory birds), which tend to be lower in trophic level and spend more time foraging in small areas similar to or smaller in size than the impacted area. Compared to smaller, lower-trophic level organisms, larger mammalian and avian carnivores are expected to have lower exposures from site-specific PFAS sources because they forage over larger areas that may include areas that are not impacted, as compared to small organisms with small home ranges<ref name="LarsonEtAl2018"/><ref name="ConderEtAl2020"/><ref name="GobasEtAl2020"/><ref name="Suski2020"/><ref name="ZodrowEtAl2021a"/>.
[[File:Newell1w2Fig5.png |thumb|500px| Figure 5. A higher tier of LNAPL CSM is useful as LNAPL site complexity increases<ref name="LNAPL-3"/>.]]
 
The ITRC (2018) describes the typical evolution of an LCSM over the course of the remediation process which can be broken into three separate stages:
 
* An ''Initial LCSM'' focuses on identifying the LNAPL concerns, such as a risk to health or safety, any LNAPL migration, LNAPL-specific regulations, and physical or aesthetic impacts.
 
* A ''Remedy Selection LCSM'' supports remedial technology evaluation by characterizing aspects of the LNAPL and site subsurface that may impact remedial technology performance.
 
* A ''Design and Performance LCSM'' focuses on presenting the technical information needed to establish remediation objectives, design and implement remedies or control measures, and track progress toward defined remediation endpoints.
 
  
One key question when developing an LCSM is “how much data is enough.”  In general, the answer is that the existing data is sufficient for the current stage of the remediation project when it allows the stakeholders to agree on a path forward<ref name="LNAPL-3"/>. Figure 5 shows that as the level of complexity of a site increases, a higher tier of LCSM is useful to provide enough information for making decisions<ref name="LNAPL-3"/><ref name="ASTM2014a"/>.  The higher tier of information could be higher data density, additional tools for a given line of evidence, or other evaluations.
+
Available information regarding PFAS exposure pathways and effects in aquatic life, terrestrial invertebrates and plants, as well as aquatic and terrestrial wildlife allow ecological risk assessment methods to be applied as outlined by USEPA<ref name="USEPA1997"/> to site-specific PFAS risk assessments. Additionally, food web modeling can be used in site-specific PFAS risk assessment to develop initial estimates of dietary concentrations for aquatic and terrestrial wildlife, which can be confirmed with tissue sampling programs at a site.
  
==LNAPL Concerns, Remediation Goals and Objectives==
+
==PFAS Risk Assessment Data Gaps==
Finally, the ITRC (2018) provides a methodology for identifying LNAPL concerns, verifying those concerns, selecting LNAPL remediation goals, and determining LNAPL remediation objectives. Examples of each of these concepts are provided below:
+
There are a number of data gaps currently associated with PFAS risk assessment including the following:
 +
*'''Unmeasured PFAS:''' There are a number of additional PFAS that we know little about and many PFAS that we are unable to quantify in the environment. The approach to dealing with the lack of information on the overwhelming number of PFAS is being debated; in the meantime, however, PFAS beyond PFOS and PFOA are being studied more, and this information will result in improved characterization of risks for other PFAS.  
  
* '''Potential Concerns:''' Human or ecological risk concerns, fire or explosivity issues, LNAPL migration, LNAPL-specific regulatory concerns, other concerns such as odors or geotechnical issues.
+
*'''Mixtures:''' Another major challenge in effects assessment for PFAS, for both human health risk assessments and environmental risk assessments, is understanding the potential importance of mixtures of PFAS. Considering the limited human health and ecological toxicity data available for just a few PFAS, the understanding of the relative toxicity, additivity, or synergistic effects of PFAS in mixtures is just beginning.
* '''Verifying Concerns:'''  Measure LNAPL transmissivity to determine if it is recoverable; measure vertical and horizontal separation distances between buildings and LNAPL bodies to screen for vapor intrusion concerns.
 
* '''Remediation Goals:'''  Reduce mobile LNAPL saturation, abate unacceptable soil concentrations, terminate LNAPL body migration, abate unacceptable constituent concentrations in dissolved and vapor phases.
 
* '''Remediation Objectives:'''  Recover LNAPL to the extent practicable based on transmissivity, reduce soil concentrations to below regulatory limits, stop LNAPL migration with a barrier, contain migrating groundwater plume (if present), reduce groundwater and vapor concentration to acceptable levels.
 
* '''Remediation Technologies:'''  LNAPL Mass Recovery technologies, LNAPL phase change technologies, LNAPL Mass Control technologies, combinations of technologies.
 
  
Overall, a LNAPL Conceptual Site Model that integrates key site specific information and current technical knowledge about LNAPL sites in general is instrumental to successful site management, where LNAPL concerns drive remediation goals, goals drive remediation objectives, and the objectives form the basis for the selection of remediation technologies.  
+
*'''Toxicity Data Gaps:''' For environmental risk assessments, some organisms such as reptiles and benthic invertebrates do not have toxicity data available. Benchmark or threshold concentrations of PFAS in environmental media intended to be protective of wildlife and aquatic organisms suffer from significant uncertainty in their derivation due to the limited number of species for which data are available. As species-specific data becomes available for more types of organisms, the accuracy of environmental risk assessments is likely to improve.  
  
 
==References==
 
==References==
 
+
<references />
<references/>
 
  
 
==See Also==
 
==See Also==
+
[https://www.atsdr.cdc.gov/pfas/health-studies/index.html Agency for Toxic Substances and Disease Registry (ATSDR) PFAS Health Studies]

Latest revision as of 18:26, 15 October 2025

Remediation of Stormwater Runoff Contaminated by Munition Constituents

Past and ongoing military operations have resulted in contamination of surface soil with munition constituents (MC), which have human and environmental health impacts. These compounds can be transported off site via stormwater runoff during precipitation events. Technologies to “trap and treat” surface runoff before it enters downstream receiving bodies (e.g., streams, rivers, ponds) (see Figure 1), and which are compatible with ongoing range activities are needed. This article describes a passive and sustainable approach for effective management of munition constituents in stormwater runoff.

Related Article(s):


Contributor: Mark E. Fuller

Key Resource(s):

  • SERDP Project ER19-1106: Development of Innovative Passive and Sustainable Treatment Technologies for Energetic Compounds in Surface Runoff on Active Ranges

Background

Surface Runoff Characteristics and Treatment Approaches

File:FullerFig1.png
Figure 1. Conceptual model of passive trap and treat approach for MC removal from stormwater runoff

During large precipitation events the rate of water deposition exceeds the rate of water infiltration, resulting in surface runoff (also called stormwater runoff). Surface characteristics including soil texture, presence of impermeable surfaces (natural and artificial), slope, and density and type of vegetation all influence the amount of surface runoff from a given land area. The use of passive systems such as retention ponds and biofiltration cells for treatment of surface runoff is well established for urban and roadway runoff. Treatment in those cases is typically achieved by directing runoff into and through a small constructed wetland, often at the outlet of a retention basin, or via filtration by directing runoff through a more highly engineered channel or vault containing the treatment materials. Filtration based technologies have proven to be effective for the removal of metals, organics, and suspended solids[1][2][3][4].

Surface Runoff on Ranges

Surface runoff represents a major potential mechanism through which energetics residues and related materials are transported off site from range soils to groundwater and surface water receptors (Figure 2). This process is particularly important for energetics that are water soluble (e.g., NTO and NQ) or generate soluble daughter products (e.g., DNAN and TNT). While traditional MC such as RDX and HMX have limited aqueous solubility, they also exhibit recalcitrance to degrade under most natural conditions. RDX and perchlorate are frequent groundwater contaminants on military training ranges. While actual field measurements of energetics in surface runoff are limited, laboratory experiments have been performed to predict mobile energetics contamination levels based on soil mass loadings[5][6].

Toxicological Effects of PFAS

The characterization of toxicological effects in human health risk assessments is based on toxicological studies of mammalian exposures to per- and polyfluoroalkyl substances (PFAS), primarily studies involving perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). The most sensitive noncancer adverse effects involve the liver and kidney, immune system, and various developmental and reproductive endpoints[7]. A select number of PFAS have been evaluated for carcinogenicity, primarily using epidemiological data. Only PFOS and PFOA (and their derivatives) have sufficient data for USEPA to characterize as Likely to Be Carcinogenic to Humans via the oral route of exposure. Epidemiological studies provided evidence of bladder, prostate, liver, kidney, and breast cancers in humans related to PFOS exposure, as well as kidney and testicular cancer in humans and limited evidence of breast cancer related to PFOA exposure[7][8][9].

USEPA’s Integrated Risk Management System (IRIS) Program is developing Toxicological Reviews to improve understanding of the toxicity of several additional PFAS (i.e., not solely PFOA and PFOS). Toxicological Reviews provide an overview of cancer and noncancer health effects based on current literature and, where data are sufficient, derive human health toxicity criteria (i.e., human health oral reference doses and cancer slope factors) that form the basis for risk-based decision making. For risk assessors, these documents provide USEPA reference doses and cancer slope factors that can be used with exposure information and other considerations to assess human health risk. Final Toxicological Reviews have been completed for the following PFAS:

  • Perfluorooctanesulfonic acid (PFOS)
  • Perfluorooctanoic acid (PFOA)
  • Perfluorobutanoic acid (PFBA)
  • Perfluorohexanoic acid (PFHxA)
  • Perfluorobutane sulfonic acid (PFBS)
  • Perfluoropropionic acid (PFPrA)
  • Perfluorohexane sulfonic acid (PFHxS)
  • Lithium bis[(trifluoromethyl)sulfonyl]azanide (HQ-115)
  • Hexafluoropropylene oxide dimer acid (HFPO DA) and its Ammonium Salt

Toxicity assessments are ongoing for the following PFAS:

  • Perfluorononanoic acid (PFNA)
  • Perfluorodecanoic acid (PFDA)

It is important to note human health toxicity criteria for inhalation of PFAS are not included in the Final Toxicological Reviews and are not currently available. In addition to IRIS, state agencies have developed peer-reviewed provisional toxicity values that have been incorporated into USEPA’s RSLs, which are updated biannually. These values have not been reviewed by or incorporated into IRIS.

With respect to ecological toxicity, effects on reproduction, growth, and development of avian and mammalian wildlife have been documented in controlled laboratory studies of exposures of standard toxicological test species (e.g., mice, quail) to PFAS. Many of these studies have been reviewed[10][11][12][13] to derive ecological Toxicity Reference Values (TRVs). TRVs can be used alongside exposure information and other considerations to assess ecological risk. Avian and mammalian wildlife receptors are generally expected to have the highest risks due to PFAS exposure. Direct toxicity to aquatic life, such as fish and invertebrates, from exposure to sediment and surface water also occurs, though concentrations in water associated with adverse effects to aquatic life are generally higher than those that could result in adverse effects to aquatic-dependent wildlife. Soil invertebrates and plants are less sensitive to PFAS when compared to terrestrial wildlife, with risk-based PFAS concentrations in soil being much higher than those associated with potential effects to terrestrial wildlife[13].

PFAS Screening Levels for Human Health and Ecological Risk Assessments

Human Health Screening Levels

Human health screening levels for PFAS have been modified multiple times over the last decade and, in the United States, are currently available for drinking water and soil exposures as Maximum Contaminant Levels (MCLs) and USEPA Regional Screening Levels (RSLs). USEPA finalized a National Primary Drinking Water Regulation (NPDWR) for six PFAS[7]:

  • Perfluorooctanoic acid (PFOA)
  • Perfluorooctane sulfonic acid (PFOS)
  • Perfluorohexane sulfonic acid (PFHxS)
  • Perfluorononanoic acid (PFNA)
  • Hexafluoropropylene oxide dimer acid (HFPO-DA, commonly known as GenX chemicals)
  • Perfluorobutane sulfonic acid (PFBS)

MCLs are enforceable drinking water standards based on the most recently available toxicity information that consider available treatment technologies and costs. The MCLs for PFAS include a Hazard Index of 1 for combined exposures to four PFAS. RSLs are developed for use in risk assessments and include soil and tap water screening levels for multiple PFAS. Soil RSLs are based on residential/unrestricted and commercial/industrial land uses, and calculations of site-specific RSLs are available.

Internationally, Canada and the European Union have also promulgated drinking water standards for select PFAS. However, large discrepancies exist among the various regulatory organizations, largely due to the different effect endpoints and exposure doses being used to calculate risk-based levels. The PFAS guidance from the Interstate Technology and Regulatory Council (ITRC) in the US includes a regularly updated compilation of screening values for PFAS and is available on their PFAS website[14]: https://pfas-1.itrcweb.org.

Ecological Screening Levels

Most peer-reviewed literature and regulatory-based environmental quality benchmarks have been developed using data for PFOS and PFOA; however, other select PFAAs have been evaluated for potential effects to aquatic receptors[14][13][10]. USEPA has developed water quality criteria for aquatic life[15][16][17] for PFOA and PFOS. Following extensive reviews of the peer-reviewed literature, Zodrow et al.[13] used the USEPA Great Lakes Initiative methodology[18] to calculate acute and chronic screening levels for aquatic life for 23 PFAS. The Argonne National Laboratory has also developed Ecological Screening Levels for multiple PFAS[19]. In contrast to surface water aquatic life benchmarks, sediment benchmark values are limited. For terrestrial systems, screening levels for direct exposure of soil plants and invertebrates to PFAS in soils have been developed for multiple AFFF-related PFAS[10][13], and the Canadian Council of Ministers of Environment developed several draft thresholds protective of direct toxicity of PFOS in soil[20].

Wildlife screening levels for abiotic media are back-calculated from food web models developed for representative receptors. Both Zodrow et al.[13] and Grippo et al.[19] include the development of risk-based screening levels for wildlife. The Michigan Department of Community Health[21] derived a provisional PFOS surface water value for avian and mammalian wildlife. In California, the San Francisco Bay Regional Water Quality Control Board developed terrestrial habitat soil ecological screening levels based on values developed in Zodrow et al.[13]. For PFOS only, a dietary screening level (i.e. applicable to the concentration of PFAS measured in dietary items) has been developed for mammals at 4.6 micrograms per kilogram (μg/kg) wet weight (ww), and for avians at 8.2 μg/kg ww[22].

Approaches for Evaluating Exposures and Effects in AFFF Site Environmental Risk Assessment: Human Health

Exposure pathways and effects for select PFAS are well understood, such that standard human health risk assessment approaches can be used to quantify risks for populations relevant to a site. Human health exposures via drinking water have been the focus in risk assessments and investigations at PFAS sites[23][24]. Risk assessment approaches for PFAS in drinking water follow typical, well-established drinking water risk assessment approaches for chemicals as detailed in regulatory guidance documents for various jurisdictions.

Incidental exposures to soil and dusts for PFAS can occur during a variety of soil disturbance activities, such as gardening and digging, hand-to-mouth activities, and intrusive groundwork by industrial or construction workers. As detailed by the ITRC[14], many US states and USEPA have calculated risk-based screening levels for these soil and drinking water pathways (and many also include dermal exposures to soils) using well-established risk assessment guidance.

Field and laboratory studies have shown that some PFCAs and PFSAs bioaccumulate in fish and other aquatic life at rates that could result in relevant dietary PFAS exposures for consumers of fish and other seafood[25][26][27][28][29][30][31][32][33][34]. In addition to fish, terrestrial wildlife can accumulate contaminants from impacted sites, resulting in potential exposures to consumers of wild game[35]. Additionally, exposures can occur though consumption of homegrown produce or agricultural products that originate from areas irrigated with PFAS-impacted groundwater, or that are amended with biosolids that contain PFAS, or that contain soils that were directly affected by PFAS releases[36]. Multiple studies have found PFAS can be taken up by plants from soil porewater[37][38][39], and livestock can accumulate PFAS from drinking water and/or feed[40]. Thus, when PFAS are present in surface water bodies where fishing or shellfish harvesting occurs or terrestrial areas where produce is grown or game is hunted, the bioaccumulation of PFAS into dietary items can be an important pathway for human exposure.

PFAAs such as PFOA and PFOS are not expected to volatilize from PFAS-impacted environmental media[8][9] such as soil and groundwater, which are the primary focus of most site-specific risk assessments. In contrast to non-volatile PFAAs, fluorotelomer alcohols (FTOHs) are among the more widely studied of the volatile PFAS. FTOHs are transient in the atmosphere with a lifetime of 20 days[41]. At most AFFF sites under evaluation, AFFF releases have occurred many years before such that FTOH may no longer be present. As such, the current assumption is that volatile PFAS, such as FTOHs historically released at the site, will have transformed to stable, low-volatility PFAS, such as PFAAs in soil or groundwater, or will they have diffused to the outdoor atmosphere. There is no evidence that FTOHs or other volatile PFAS are persistent in groundwater or soils such that they present an indoor vapor intrusion pathway risk concern as observed for chlorinated solvents. Ongoing research continues for the vapor pathway[14].

General and site-specific human health exposure pathways and risk assessment methods as outlined by USEPA[42][43] can be applied to PFAS risk assessments for which human health toxicity values have been developed. Additionally, for risk assessments with dietary exposures of PFAS, standard risk assessment food web modeling can be used to develop initial estimates of dietary concentrations which can be confirmed with site-specific tissue sampling programs.

Approaches for Evaluating Exposures and Effects in AFFF Site Environmental Risk Assessment: Ecological

Information available currently on exposures and effects of PFAS in ecological receptors indicate that the PFAS ecological risk issues at most sites are primarily associated with risks to vertebrate wildlife. Avian and mammalian wildlife are relatively sensitive to PFAS, and dietary intake via bioaccumulation in terrestrial and aquatic food webs can result in exposures that are dominated by the more accumulative PFAS[44][10][13]. Direct toxicity to aquatic life (e.g., fish, pelagic life, benthic invertebrates, and aquatic plants) can occur from exposure to sediment and surface water at effected sites. For larger areas, surface water concentrations associated with adverse effects to aquatic life are generally higher than those that could result in adverse effects to aquatic-dependent wildlife. Soil invertebrates and plants are generally less sensitive, with risk-based concentrations in soil being much higher than those associated with potential effects to terrestrial wildlife[13].

Aquatic life are exposed to PFAS through direct exposure in surface water and sediment. Ecological risk assessment approaches for PFAS for aquatic life follow standard risk assessment approaches. The evaluation of potential risks for aquatic life with direct exposure to PFAS in environmental media relies on comparing concentrations in external exposure media to protective, media-specific benchmarks, including the aquatic life risk-based screening levels discussed above[13][45].

When an area at the point of PFAS release is an industrial setting which does not feature favorable habitats for terrestrial and aquatic-dependent wildlife, the transport mechanisms may allow PFAS to travel offsite. If offsite or downgradient areas contain ecological habitat, then PFAS transported to these areas are expected to pose the highest risk potential to wildlife, particularly those areas that feature aquatic habitat[46][44].

Wildlife receptors, specifically birds and mammals, are typically exposed to PFAS through uptake from dietary sources such as plants and invertebrates, along with direct soil ingestion during foraging activities. Dietary intake modeling typical for ecological risk assessments is the recommended approach for an evaluation of potential risks to wildlife species where PFAS exposure occurs primarily via dietary uptake from bioaccumulation pathways. Dietary intake modeling uses relevant exposure factors for each receptor group (terrestrial birds, terrestrial mammals, aquatic-dependent birds, and aquatic mammals) to determine a total daily intake (TDI) of PFAS via all potential exposure pathways. This approach requires determination of concentrations of PFAS in dietary items, which can be obtained by measuring PFAS in biota at sites or by using food web models to predict concentrations in biota using measured concentrations of PFAS in soil, sediment, or surface water. Food web models use bioaccumulation metrics such as bioaccumulation factors (BAFs) and biomagnification factors (BMFs) with measurements of PFAS in abiotic media to estimate concentrations in dietary items, including plants and benthic or pelagic invertebrates, to model wildlife exposure and calculate TDI. Once site-specific TDI values are calculated, they are compared to known TRVs identified from toxicity data with exposure doses associated with a lack of adverse effects (termed no observed adverse effect level [NOAEL]) or low adverse effects (termed lowest observed adverse effect level [LOAEL]), per standard risk assessment practice[43].

Recently, Conder et al.[10], Gobas et al.[11], and Zodrow et al.[13] compiled bioaccumulation modeling parameters and approaches for terrestrial and aquatic food web modeling of a variety of commonly detected PFAS at AFFF sites. There are also several sources of TRVs which can be relied upon for estimating TDI values[10][11][13][47][12]. In general, the highest risk for PFAS is expected for smaller insectivore and omnivore receptors (e.g., shrews and other small rodents, small nonmigratory birds), which tend to be lower in trophic level and spend more time foraging in small areas similar to or smaller in size than the impacted area. Compared to smaller, lower-trophic level organisms, larger mammalian and avian carnivores are expected to have lower exposures from site-specific PFAS sources because they forage over larger areas that may include areas that are not impacted, as compared to small organisms with small home ranges[44][10][11][12][13].

Available information regarding PFAS exposure pathways and effects in aquatic life, terrestrial invertebrates and plants, as well as aquatic and terrestrial wildlife allow ecological risk assessment methods to be applied as outlined by USEPA[43] to site-specific PFAS risk assessments. Additionally, food web modeling can be used in site-specific PFAS risk assessment to develop initial estimates of dietary concentrations for aquatic and terrestrial wildlife, which can be confirmed with tissue sampling programs at a site.

PFAS Risk Assessment Data Gaps

There are a number of data gaps currently associated with PFAS risk assessment including the following:

  • Unmeasured PFAS: There are a number of additional PFAS that we know little about and many PFAS that we are unable to quantify in the environment. The approach to dealing with the lack of information on the overwhelming number of PFAS is being debated; in the meantime, however, PFAS beyond PFOS and PFOA are being studied more, and this information will result in improved characterization of risks for other PFAS.
  • Mixtures: Another major challenge in effects assessment for PFAS, for both human health risk assessments and environmental risk assessments, is understanding the potential importance of mixtures of PFAS. Considering the limited human health and ecological toxicity data available for just a few PFAS, the understanding of the relative toxicity, additivity, or synergistic effects of PFAS in mixtures is just beginning.
  • Toxicity Data Gaps: For environmental risk assessments, some organisms such as reptiles and benthic invertebrates do not have toxicity data available. Benchmark or threshold concentrations of PFAS in environmental media intended to be protective of wildlife and aquatic organisms suffer from significant uncertainty in their derivation due to the limited number of species for which data are available. As species-specific data becomes available for more types of organisms, the accuracy of environmental risk assessments is likely to improve.

References

  1. ^ Sansalone, J.J., 1999. In-situ performance of a passive treatment system for metal source control. Water Science and Technology, 39(2), pp. 193-200. doi: 10.1016/S0273-1223(99)00023-2
  2. ^ Deletic, A., Fletcher, T.D., 2006. Performance of grass filters used for stormwater treatment—A field and modelling study. Journal of Hydrology, 317(3-4), pp. 261-275. doi: 10.1016/j.jhydrol.2005.05.021
  3. ^ Grebel, J.E., Charbonnet, J.A., Sedlak, D.L., 2016. Oxidation of organic contaminants by manganese oxide geomedia for passive urban stormwater treatment systems. Water Research, 88, pp. 481-491. doi: 10.1016/j.watres.2015.10.019
  4. ^ Seelsaen, N., McLaughlan, R., Moore, S., Ball, J.E., Stuetz, R.M., 2006. Pollutant removal efficiency of alternative filtration media in stormwater treatment. Water Science and Technology, 54(6-7), pp. 299-305. doi: 10.2166/wst.2006.617
  5. ^ Cubello, F., Polyakov, V., Meding, S.M., Kadoya, W., Beal, S., Dontsova, K., 2024. Movement of TNT and RDX from composition B detonation residues in solution and sediment during runoff. Chemosphere, 350, Article 141023. doi: 10.1016/j.chemosphere.2023.141023
  6. ^ Karls, B., Meding, S.M., Li, L., Polyakov, V., Kadoya, W., Beal, S., Dontsova, K., 2023. A laboratory rill study of IMX-104 transport in overland flow. Chemosphere, 310, Article 136866. doi: 10.1016/j.chemosphere.2022.136866  Open Access Article
  7. ^ 7.0 7.1 7.2 United States Environmental Protection Agency (USEPA), 2024. Per- and Polyfluoroalkyl Substances (PFAS) Final PFAS National Primary Drinking Water Regulation. Website
  8. ^ 8.0 8.1 United States Environmental Protection Agency (USEPA), 2016. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS). Office of Water, EPA 822-R-16-004. Free Download  Report.pdf
  9. ^ 9.0 9.1 United States Environmental Protection Agency (USEPA), 2016b. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA). Office of Water, EPA 822-R-16-005. Free Download  Report.pdf
  10. ^ 10.0 10.1 10.2 10.3 10.4 10.5 10.6 Conder, J., Arblaster, J., Larson, E., Brown, J., Higgins, C., 2020. Guidance for Assessing the Ecological Risks of PFAS to Threatened and Endangered Species at Aqueous Film Forming Foam-Impacted Sites. Strategic Environmental Research and Development Program (SERDP) Project ER 18-1614. Project Website  Guidance Document
  11. ^ 11.0 11.1 11.2 11.3 Gobas, F.A.P.C., Kelly, B.C., Kim, J.J., 2020. Final Report: A Framework for Assessing Bioaccumulation and Exposure Risks of PFAS in Threatened and Endangered Species on AFFF-Impacted Sites. SERDP Project ER18-1502. Project Website  Final Report
  12. ^ 12.0 12.1 12.2 Suski, J.G., 2020. Investigating Potential Risk to Threatened and Endangered Species from Per- and Polyfluoroalkyl Substances (PFAS) on Department of Defense (DoD) Sites. SERDP Project ER18-1626. Project Website  Report.pdf
  13. ^ 13.00 13.01 13.02 13.03 13.04 13.05 13.06 13.07 13.08 13.09 13.10 13.11 13.12 Zodrow, J.M., Frenchmeyer, M., Dally, K., Osborn, E., Anderson, P. and Divine, C., 2021. Development of Per and Polyfluoroalkyl Substances Ecological Risk-Based Screening Levels. Environmental Toxicology and Chemistry, 40(3), pp. 921-936. doi: 10.1002/etc.4975   Open Access Article
  14. ^ 14.0 14.1 14.2 14.3 Interstate Technology and Regulatory Council (ITRC) 2023. PFAS Technical and Regulatory Guidance Document. ITRC PFAS Website
  15. ^ United States Environmental Protection Agency (USEPA), 2022. Fact Sheet: Draft 2022 Aquatic Life Ambient Water Quality Criteria for Perfluorooctanoic acid (PFOA) and Perfluorooctane Sulfonic Acid (PFOS)). Office of Water, EPA 842-D-22-005. Fact Sheet
  16. ^ United States Environmental Protection Agency (USEPA), 2024. Final Freshwater Aquatic Life Ambient Water Quality Criteria and Acute Saltwater Aquatic Life Benchmark for Perfluorooctanoic Acid (PFOA). Office of Water, EPA-842-R-24-002. Report.pdf
  17. ^ United States Environmental Protection Agency (USEPA), 2024. Final Freshwater Aquatic Life Ambient Water Quality Criteria and Acute Saltwater Aquatic Life Benchmark for Perfluorooctane Sulfonate (PFOS). Office of Water, EPA-842-R-24-003. Report.pdf
  18. ^ United States Environmental Protection Agency (USEPA), 2012. Water Quality Guidance for the Great Lakes System. Part 132. Government Website  Part132.pdf
  19. ^ 19.0 19.1 Grippo, M., Hayse, J., Hlohowskyj, I., Picel, K., 2024. Derivation of PFAS Ecological Screening Values - Update. Argonne National Laboratory Environmental Science Division. Report.pdf
  20. ^ Canadian Council of Ministers of the Environment (CCME), 2021. Canadian Soil and Groundwater Quality Guidelines for the Protection of Environmental and Human Health, Perfluorooctane Sulfonate (PFOS). Open Access Government Document
  21. ^ Dykema, L.D., 2015. Michigan Department of Community Health Final Report, USEPA Great Lakes Restoration Initiative (GLRI) Project, Measuring Perfluorinated Compounds in Michigan Surface Waters and Fish. Grant GL-00E01122. Free Download  Report.pdf
  22. ^ Environment and Climate Change Canada, 2018. Federal Environmental Quality Guidelines, Perfluorooctane Sulfonate (PFOS). Repoprt.pdf
  23. ^ Post, G.B., Cohn, P.D., Cooper, K.R., 2012. Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: A critical review of recent literature. Environmental Research, 116, pp. 93-117. doi: 10.1016/j.envres.2012.03.007
  24. ^ Guelfo, J.L., Marlow, T., Klein, D.M., Savitz, D.A., Frickel, S., Crimi, M., Suuberg, E.M., 2018. Evaluation and Management Strategies for Per- and Polyfluoroalkyl Substances (PFASs) in Drinking Water Aquifers: Perspectives from Impacted U.S. Northeast Communities. Environmental Health Perspectives,126(6), 13 pages. doi: 10.1289/EHP2727  Open Access Article
  25. ^ Martin, J.W., Mabury, S.A., Solomon, K.R., Muir, D.C., 2003. Dietary accumulation of perfluorinated acids in juvenile rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry, 22(1), pp.189-195. doi: 10.1002/etc.5620220125
  26. ^ Martin, J.W., Mabury, S.A., Solomon, K.R., Muir, D.C., 2003. Bioconcentration and tissue distribution of perfluorinated acids in rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry, 22(1), pp.196-204. doi: 10.1002/etc.5620220126
  27. ^ Chen, F., Gong, Z., Kelly, B.C., 2016. Bioavailability and bioconcentration potential of perfluoroalkyl-phosphinic and -phosphonic acids in zebrafish (Danio rerio): Comparison to perfluorocarboxylates and perfluorosulfonates. Science of The Total Environment, 568, pp. 33-41. doi: 10.1016/j.scitotenv.2016.05.215
  28. ^ Fang, S., Zhang, Y., Zhao, S., Qiang, L., Chen, M., Zhu, L., 2016. Bioaccumulation of per fluoroalkyl acids including the isomers of perfluorooctane sulfonate in carp (Cyprinus carpio) in a sediment/water microcosm. Environmental Toxicology and Chemistry, 35(12), pp. 3005-3013. doi: 10.1002/etc.3483
  29. ^ Bertin, D., Ferrari, B.J.D. Labadie, P., Sapin, A., Garric, J., Budzinski, H., Houde, M., Babut, M., 2014. Bioaccumulation of perfluoroalkyl compounds in midge (Chironomus riparius) larvae exposed to sediment. Environmental Pollution, 189, pp. 27-34. doi: 10.1016/j.envpol.2014.02.018
  30. ^ Bertin, D., Labadie, P., Ferrari, B.J.D., Sapin, A., Garric, J., Geffard, O., Budzinski, H., Babut. M., 2016. Potential exposure routes and accumulation kinetics for poly- and perfluorinated alkyl compounds for a freshwater amphipod: Gammarus spp. (Crustacea). Chemosphere, 155, pp. 380-387. doi: 10.1016/j.chemosphere.2016.04.006
  31. ^ Dai, Z., Xia, X., Guo, J., Jiang, X., 2013. Bioaccumulation and uptake routes of perfluoroalkyl acids in Daphnia magna. Chemosphere, 90(5), pp.1589-1596. doi: 10.1016/j.chemosphere.2012.08.026
  32. ^ Prosser, R.S., Mahon, K., Sibley, P.K., Poirier, D., Watson-Leung, T. 2016. Bioaccumulation of perfluorinated carboxylates and sulfonates and polychlorinated biphenyls in laboratory-cultured Hexagenia spp., Lumbriculus variegatus and Pimephales promelas from field-collected sediments. Science of The Total Environment, 543(A), pp. 715-726. doi: 10.1016/j.scitotenv.2015.11.062
  33. ^ Rich, C.D., Blaine, A.C., Hundal, L., Higgins, C., 2015. Bioaccumulation of Perfluoroalkyl Acids by Earthworms (Eisenia fetida) Exposed to Contaminated Soils. Environmental Science and Technology, 49(2) pp. 881-888. doi: 10.1021/es504152d
  34. ^ Muller, C.E., De Silva, A.O., Small, J., Williamson, M., Wang, X., Morris, A., Katz, S., Gamberg, M., Muir, D.C.G., 2011. Biomagnification of Perfluorinated Compounds in a Remote Terrestrial Food Chain: Lichen–Caribou–Wolf. Environmental Science and Technology, 45(20), pp. 8665-8673. doi: 10.1021/es201353v
  35. ^ Cite error: Invalid <ref> tag; no text was provided for refs named ConderEtAl2021
  36. ^ Brown, J.B, Conder, J.M., Arblaster, J.A., Higgins, C.P., 2020. Assessing Human Health Risks from Per- and Polyfluoroalkyl Substance (PFAS)-Impacted Vegetable Consumption: A Tiered Modeling Approach. Environmental Science and Technology, 54(23), pp. 15202-15214. doi: 10.1021/acs.est.0c03411  Open Access Article
  37. ^ Blaine, A.C., Rich, C.D., Hundal, L.S., Lau, C., Mills, M.A., Harris, K.M., Higgins, C.P., 2013. Uptake of Perfluoroalkyl Acids into Edible Crops via Land Applied Biosolids: Field and Greenhouse Studies. Environmental Science and Technology, 47(24), pp. 14062-14069. doi: 10.1021/es403094q  Free Download from epa.gov
  38. ^ Blaine, A.C., Rich, C.D., Sedlacko, E.M., Hyland, K.C., Stushnoff, C., Dickenson, E.R.V., Higgins, C.P., 2014. Perfluoroalkyl Acid Uptake in Lettuce (Lactuca sativa) and Strawberry (Fragaria ananassa) Irrigated with Reclaimed Water. Environmental Science and Technology, 48(24), pp. 14361-14368. doi: 10.1021/es504150h
  39. ^ Ghisi, R., Vamerali, T., Manzetti, S., 2019. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review. Environmental Research, 169, pp. 326-341. doi: 10.1016/j.envres.2018.10.023
  40. ^ van Asselt, E.D., Kowalczyk, J., van Eijkeren, J.C.H., Zeilmaker, M.J., Ehlers, S., Furst, P., Lahrssen-Wiederhold, M., van der Fels-Klerx, H.J., 2013. Transfer of perfluorooctane sulfonic acid (PFOS) from contaminated feed to dairy milk. Food Chemistry, 141(2), pp.1489-1495. doi: 10.1016/j.foodchem.2013.04.035
  41. ^ Ellis, D.A., Martin, J.W., De Silva, A.O., Mabury, S.A., Hurley, M.D., Sulbaek Andersen, M.P., Wallington, T.J., 2004. Degradation of Fluorotelomer Alcohols:  A Likely Atmospheric Source of Perfluorinated Carboxylic Acids. Environmental Science and Technology, 38(12), pp. 3316-3321. doi: 10.1021/es049860w
  42. ^ United States Environmental Protection Agency (USEPA), 1989. Risk Assessment Guidance for Superfund: Volume I, Human Health Evaluation Manual (Part A). Office of Solid Waste and Emergency Response, EPA/540/1-89/002. Free Download  Report.pdf
  43. ^ 43.0 43.1 43.2 United States Environmental Protection Agency (USEPA), 1997. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments, Interim Final. Office of Solid Waste and Emergency Response, EPA 540-R-97-006. Free Download  Report.pdf
  44. ^ 44.0 44.1 44.2 Larson, E.S., Conder, J.M., Arblaster, J.A., 2018. Modeling avian exposures to perfluoroalkyl substances in aquatic habitats impacted by historical aqueous film forming foam releases. Chemosphere, 201, pp. 335-341. doi: 10.1016/j.chemosphere.2018.03.004
  45. ^ United States Environmental Protection Agency (USEPA), 2024. National Recommended Water Quality Criteria - Aquatic Life Criteria Table. USEPA Website
  46. ^ Ahrens, L., Bundschuh, M., 2014. Fate and effects of poly- and perfluoroalkyl substances in the aquatic environment: A review. Environmental Toxicology and Chemistry, 33(9), pp. 1921-1929. doi: 10.1002/etc.2663  Open Access Article
  47. ^ Newsted, J.L., Jones, P.D., Coady, K., Giesy, J.P., 2005. Avian Toxicity Reference Values for Perfluorooctane Sulfonate. Environmental Science and Technology, 39(23), pp. 9357-9362. doi: 10.1021/es050989v

See Also

Agency for Toxic Substances and Disease Registry (ATSDR) PFAS Health Studies