Difference between revisions of "User:Jhurley/sandbox"

From Enviro Wiki
Jump to: navigation, search
(/* Stockpile Treatment, Eielson AFB, Alaska (ESTCP project ER20-5198Crownover, E., Heron, G., Pennell, K., Ramsey, B., Rickabaugh, T., Stallings, P., Stauch, L., Woodcock, M., 2023. Ex Situ Thermal Treatment of PFAS-Impacted Soils, Final Report. Eiels...)
 
Line 1: Line 1:
The persistent release of residual contaminants from low hydraulic conductivity (low ''k'') zones prevents many chlorinated solvent sites from reaching groundwater cleanup goals. Low ''k'' aquifer settings limit the effectiveness of many conventional remediation technologies that rely on extraction, recirculation, or amendment delivery and distribution to achieve contact between the residual contaminants and the reagents, contact which is necessary for subsequent contaminant transformation or destruction. Alternative methods are needed to effectively distribute remedial amendments, to control contaminants leaving low ''k'' source zones, and to enhance natural attenuation processes. Two innovative remediation technologies for the treatment of chlorinated solvents and other contaminants in low ''k'' media are introduced, along with operational and performance results from recent field demonstrations.   
+
==Thermal Conduction Heating for Treatment of PFAS-Impacted Soil==
 +
Removal of [[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS)]] compounds from impacted soils is challenging due to the modest volatility and varying properties of most PFAS compounds. Thermal treatment technologies have been developed for treatment of semi-volatile compounds in soils such as dioxins, furans, poly-aromatic hydrocarbons and poly-chlorinated biphenyls at temperatures near 325&deg;C. In controlled bench-scale testing, complete removal of targeted PFAS compounds to concentrations below reporting limits of 0.5 µg/kg was demonstrated at temperatures of 400&deg;C<ref name="CrownoverEtAl2019"> Crownover, E., Oberle, D., Heron, G., Kluger, M., 2019.  Perfluoroalkyl and polyfluoroalkyl substances thermal desorption evaluation. Remediation Journal, 29(4), pp. 77-81. [https://doi.org/10.1002/rem.21623 doi: 10.1002/rem.21623]</ref>. Three field-scale thermal PFAS treatment projects that have been completed in the US include an in-pile treatment demonstration, an ''in situ'' vadose zone treatment demonstration and a larger scale treatment demonstration with excavated PFAS-impacted soil in a constructed pile. Based on the results, thermal treatment temperatures of at least 400&deg;C and a holding time of 7-10 days are recommended for reaching local and federal PFAS soil standards. The energy requirement to treat typical wet soil ranges from 300 to 400 kWh per cubic yard, exclusive of heat losses which are scale dependent. Extracted vapors have been treated using condensation and granular activated charcoal filtration, with thermal and catalytic oxidation as another option which is currently being evaluated for field scale applications. Compared to other options such as soil washing, the ability to treat on site and to treat all soil fractions is an advantage.   
 
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
 
<div style="float:right;margin:0 0 2em 2em;">__TOC__</div>
  
 
'''Related Article(s):'''
 
'''Related Article(s):'''
* [[Bioremediation - Anaerobic | Anaerobic Bioremediation]]
 
* [[Chemical Oxidation (In Situ - ISCO) | In Situ Chemical Oxidation]]
 
* [[Chemical Reduction (In Situ - ISCR) | In Situ Chemical Reduction]]
 
  
'''CONTRIBUTOR(S): '''
+
*[[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS)]]
* [[Stephen D. Richardson, Ph.D., PE]]
+
*[[Thermal Conduction Heating (TCH)]]
* [[Craig E. Divine, Ph.D., PG]]
 
  
'''Key Resource(s):'''
+
'''Contributors:''' Gorm Heron, Emily Crownover, Patrick Joyce, Ramona Iery
* The Horizontal Reactive Media Treatment Well (HRX Well<sup>&reg;</sup>) for Passive In-Situ Remediation<ref name="Divine2018a">Divine, C. E., Roth, T, Crimi, M., DiMarco, A.C., Spurlin, M., Gillow, J., and Leone, G., 2018. The Horizontal Reactive Media Treatment Well (HRX Well<sup>&reg;</sup>) for Passive In-Situ Remediation. Groundwater Monitoring & Remediation, 38(1), pp. 56–65.  [https://doi.org/10.1111/gwmr.12252 DOI: 10.1111/gwmr.12252]</ref>
 
  
* The Horizontal Reactive Media Treatment Well (HRX Well<sup>&reg;</sup>) for Passive In Situ Remediation: Design, Implementation, and Sustainability Considerations<ref name="Divine2018">Divine, C.E., Wright, J., Wang, J., McDonough, J., Kladias, M., Crimi, M., Nzeribe, B.N., Devlin, J.F., Lubrecht, M., Ombalski, D., Hodge, B., Voscott, H., and Gerber, K., 2018. The Horizontal Reactive Media Treatment Well (HRX Well<sup>&reg;</sup>) for Passive In Situ Remediation: Design, Implementation, and Sustainability Considerations. Remediation, 28(4), pp. 5-16.  [https://doi.org/10.1002/rem.21571 DOI: 10.1002/rem.21571]&nbsp;&nbsp; Also available from: [https://www.researchgate.net/publication/327487096_The_horizontal_reactive_media_treatment_well_HRX_WellR_for_passive_in_situ_remediation_Design_implementation_and_sustainability_considerations ResearchGate]</ref>
+
'''Key Resource:'''
 +
*Perfluoroalkyl and polyfluoroalkyl substances thermal desorption evaluation<ref name="CrownoverEtAl2019"/>
  
* New Application of A Geotechnical Technology to Remediate Low-Permeability Contaminated Media – Final Technical Report<ref name="Richardson2020">Richardson, S.D., Hart, D.M., Long, J.A., and Newell, C.J., 2020. New Application of A Geotechnical Technology to Remediate Low-Permeability Contaminated Media – Final Technical Report. ER-201627, Environmental Security Technology Certification Program (ESTCP). [https://www.serdp-estcp.org/Program-Areas/Environmental-Restoration/Contaminated-Groundwater/Persistent-Contamination/ER-201627/ Project Overview]</ref>
+
==Introduction==
 +
[[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS)]] have become prominent emerging contaminants in soil and groundwater. Soil source zones have been identified at locations where the chemicals were produced, handled or used. Few effective options exist for treatments that can meet local and federal soil standards. Over the past 30 plus years, thermal remediation technologies have grown from experimental and innovative prospects to mature and accepted solutions deployed effectively at many sites. More than 600 thermal case studies have been summarized by Horst and colleagues<ref name="HorstEtAl2021">Horst, J., Munholland, J., Hegele, P., Klemmer, M., Gattenby, J., 2021. In Situ Thermal Remediation for Source Areas: Technology Advances and a Review of the Market From 1988–2020. Groundwater Monitoring & Remediation, 41(1), p. 17. [https://doi.org/10.1111/gwmr.12424  doi: 10.1111/gwmr.12424]&nbsp; [[Media: gwmr.12424.pdf | Open Access Manuscript]]</ref>. [[Thermal Conduction Heating (TCH)]] has been used for higher temperature applications such as removal of [[1,4-Dioxane]]. This article reports recent experience with TCH treatment of PFAS-impacted soil.
 +
 
 +
==Target Temperature and Duration==
 +
PFAS behave differently from most other organics subjected to TCH treatment. While the boiling points of individual PFAS fall in the range of 150-400&deg;C, their chemical and physical behavior creates additional challenges. Some PFAS form ionic species in certain pH ranges and salts under other chemical conditions. This intricate behavior and our limited understanding of what this means for our ability to remove the PFAS from soils means that direct testing of thermal treatment options is warranted. Crownover and colleagues<ref name="CrownoverEtAl2019"/> subjected PFAS-laden soil to bench-scale heating to temperatures between 200 and 400&deg;C which showed strong reductions of PFAS concentrations at 350&deg;C and complete removal of many PFAS compounds at 400&deg;C. The soil concentrations of targeted PFAS were reduced to nearly undetectable levels in this study.
 +
 
 +
==Heating Method==
 +
For semi-volatile compounds such as dioxins, furans, poly-chlorinated biphenyls (PCBs) and Poly-Aromatic Hydrocarbons (PAH), thermal conduction heating has evolved as the dominant thermal technology because it is capable of achieving soil temperatures higher than the boiling point of water, which are necessary for complete removal of these organic compounds. Temperatures between 200 and 500&deg;C have been required to achieve the desired reduction in contaminant concentrations<ref name="StegemeierVinegar2001">Stegemeier, G.L., Vinegar, H.J., 2001. Thermal Conduction Heating for In-Situ Thermal Desorption of Soils. Ch. 4.6, pp. 1-37. In: Chang H. Oh (ed.), Hazardous and Radioactive Waste Treatment Technologies Handbook, CRC Press, Boca Raton, FL. ISBN 9780849395864 [[Media: StegemeierVinegar2001.pdf | Open Access Article]]</ref>. TCH has become a popular technology for PFAS treatment because temperatures in the 400&deg;C range are needed.
 +
 
 +
The energy source for TCH can be electricity (most commonly used), or fossil fuels (typically gas, diesel or fuel oil). Electrically powered TCH offers the largest flexibility for power input which also can be supplied by renewable and sustainable energy sources.
  
==Introduction==
+
==Energy Usage==
[[File:Richardson1w2Fig1.png | thumb | 400px | Figure 1. Examples of low ''k'' geology. Upper left: bay muds, Oakland, California; lower left: weathered siltstone, Denver, Colorado; right: tailings slimes, central New Mexico<ref name="Horst2019"/>.]]
+
Treating PFAS-impacted soil with heat requires energy to first bring the soil and porewater to the boiling point of water, then to evaporate the porewater until the soil is dry, and finally to heat the dry soil up to the target treatment temperature. The energy demand for wet soils falls in the 300-400 kWh/cy range, dependent on porosity and water saturation. Additional energy is consumed as heat is lost to the surroundings and by vapor treatment equipment, yielding a typical usage of 400-600 kWh/cy total for larger soil treatment volumes. Wetter soils and small treatment volumes drive the energy usage towards the higher number, whereas larger soil volumes and dry soil can be treated with less energy.
[[File:Richardson1w2Fig2.png | thumb | 400px | Figure 2. Contaminant back diffusion (“Matrix Diffusion”) from low ''k'' zones<ref name="NRC2005">National Research Council, 2005. Contaminants in the Subsurface: Source Zone Assessment and Remediation. National Academies Press, Washington, DC, pp. 372. [https://doi.org/10.17226/11146 DOI: 10.17226/11146]&nbsp;&nbsp; [[Media: NRC2005.pdf | Book.pdf]]</ref>.]]
+
 
A critical challenge preventing many chlorinated solvent sites from achieving groundwater cleanup goals is the long term release of residual contaminants from low hydraulic conductivity (low ''k'') zones such as silts, clays, glacial till, over-bank deposits, marine deposits, tailings “slimes”, saprolite and bedrock (see Figure 1)<ref name ="Horst2019">Horst, J., Divine, C., Schnobrich, M., Oesterreich, R., and Munholland, J., 2019. Groundwater Remediation in Low-Permeability Settings: The Evolving Spectrum of Proven and Potential. Groundwater Monitoring & Remediation, 39(1), pp. 11-19. [https://doi.org/10.1111/gwmr.12316 DOI: 10.1111/gwmr.12316]</ref><ref name ="Sale2008">Sale, T., C. Newell, H. Stroo, R. Hinchee, and Johnson, P., 2008. Frequently Asked Questions Regarding Management of Chlorinated Solvents in Soils and Groundwater. Environmental Security Technology Certification Program (ESTCP) Project ER-0530, 38 pp. [[Media:2008-Sale-Frequently_Asked_Questions_Regarding_Management_of_Chlorinated_Solvent_in_Soils_and_Groundwater.pdf  | Report.pdf]]&nbsp;&nbsp; [https://serdp-estcp.org/Program-Areas/Environmental-Restoration/Contaminated-Groundwater/Persistent-Contamination/ER-200530/(language)/eng-US Project overview]</ref>. Such sites may be dominated by matrix diffusion processes (see Figure 2) which can significantly prolong restoration and site management timeframes. Residual contaminants residing in low permeability zones slowly diffuse from the low ''k'' matrix back into higher permeability zones, becoming a persistent source that is very difficult to remediate. One of the side effects of matrix diffusion is concentration rebound after an ''in situ'' treatment is applied. This is commonly observed at sites treated with chemical oxidation<ref name="McGuire2006">McGuire, T.M., McDade, J.M., and Newell, C.J., 2006. Performance of DNAPL Source Depletion Technologies at 59 Chlorinated Solvent-Impacted Sites. Groundwater Monitoring & Remediation. Volume 26, Issue 1, pp. 73-84.  [https://doi.org/10.1111/j.1745-6592.2006.00054.x DOI: 10.1111/j.1745-6592.2006.00054.x]&nbsp;&nbsp; [https://www.provectusenvironmental.com/marketing/p-ox1/McGuire%20et%20al%202006.pdf  Free download.pdf]</ref><ref name="Krembs2010">Krembs, F., Siegrist, R., Crimi, M., Furrer, R., and Petri, B., 2010. ISCO for Groundwater Remediation: Analysis of Field Applications and Performance. Groundwater Monitoring & Remediation, 30(4), pp. 42-53.  [https://doi.org/10.1111/j.1745-6592.2010.01312.x DOI: 10.1111/j.1745-6592.2010.01312.x]</ref> and has the potential to occur at ''in situ'' bioremediation sites after the depletion of electron donors<ref name="Adamson2011">Adamson, D., McGuire, T., Newell, C., and Stroo, H., 2011. Sustained Treatment: Implications for Treatment Timescales Associated with Source-Depletion Technologies. Remediation, 21(2), pp. 27-50.  [https://doi.org/10.1002/rem.20280 DOI: 10.1002/rem.20280]</ref>.
+
==Vapor Treatment==
 +
During the TCH process a significant fraction of the PFAS compounds are volatilized by the heat and then removed from the soil by vacuum extraction. The vapors must be treated and eventually discharged while meeting local and/or federal standards. Two types of vapor treatment have been used in past TCH applications for organics: (1) thermal and catalytic oxidation and (2) condensation followed by granular activated charcoal (GAC) filtration. Due to uncertainties related to thermal destruction of fluorinated compounds and future requirements for treatment temperature and residence time, condensation and GAC filtration have been used in the first three PFAS treatment field demonstrations. It should be noted that PFAS compounds will stick to surfaces and that decontamination of the equipment is important. This could generate additional waste as GAC vessels, pipes and other wetted equipment need careful cleaning with solvents or rinsing agents such as PerfluorAd<sup><small>TM</small></sup>.  
  
Currently, there are limited remediation options available to treat residual contamination trapped in low ''k'' zones. Low ''k'' settings limit the applicability and effectiveness of conventional remediation technologies due to the constraint on fluid introduction and recovery. As such, methods relying on extraction, recirculation, or reagent delivery and distribution are often limited in their effectiveness. For the long lived, difficult to treat sites, innovative technologies are needed that will reliably address mass flux limitations of contaminants leaving low ''k'' source zones, and also increase the actual treatment of the contaminants leaving these low ''k'' zones by enhancing natural attenuation processes. Two innovative technologies investigated by ESTCP are summarized below.
+
==PFAS Reactivity and Fate==
 +
While evaluating initial soil treatment results, Crownover ''et al''<ref name="CrownoverEtAl2019"/> noted the lack of complete data sets when the soils were analyzed for non-targeted compounds or extractable precursors. Attempts to establish the fluorine balance suggest that the final fate of the fluorine in the PFAS is not yet fully understood. Transformations are likely occurring in the heated soil as demonstrated in laboratory experiments with and without calcium hydroxide (Ca(OH)<small><sub>2</sub></small>) amendment<ref>Koster van Groos, P.G., 2021. Small-Scale Thermal Treatment of Investigation-Derived Wastes Containing PFAS. [https://serdp-estcp.mil/ Strategic Environmental Research and Development Program (SERDP) - Environmental Security Technology Certification Program (ESTCP)], [https://serdp-estcp.mil/projects/details/2f1577ac-c8ea-4ae8-804e-c9f97a12edb3/small-scale-thermal-treatment-of-investigation-derived-wastes-idw-containing-pfas Project ER18-1556 Website], [[Media: ER18-1556_Final_Report.pdf | Final Report.pdf]]</ref>. Amendments such as Ca(OH)<sub><small>2</small></sub> may be useful in reducing the required treatment temperature by catalyzing PFAS degradation. With thousands of PFAS potentially present, the interactions are complex and may never be fully understood. Therefore, successful thermal treatment may require a higher target temperature than for other organics with similar boiling points – simply to provide a buffer against the uncertainty.
  
==“Grout Bomber”==
+
==Case Studies==
===Technology Description===
+
===Stockpile Treatment, Eielson AFB, Alaska ([https://serdp-estcp.mil/projects/details/62098505-de86-43b2-bead-ae8018854141 ESTCP project ER20-5198]<ref name="CrownoverEtAl2023">Crownover, E., Heron, G., Pennell, K., Ramsey, B., Rickabaugh, T., Stallings, P., Stauch, L., Woodcock, M., 2023. Ex Situ Thermal Treatment of PFAS-Impacted Soils, [[Media: ER20-5198 Final Report.pdf | Final Report.]] Eielson Air Force Base, Alaska. [https://serdp-estcp.mil/ Strategic Environmental Research and Development Program (SERDP) - Environmental Security Technology Certification Program (ESTCP)], [https://serdp-estcp.mil/projects/details/62098505-de86-43b2-bead-ae8018854141 Project ER20-5198 Website]</ref>)===
[[File:Richardson1w2Fig3.png | thumb | 400px | Figure 3. a) Grout Bomber equipment; b) hopper for mixing and delivery of grout to the “stitcher”; and c) grout exiting the mandrel]]
+
[[File: HeronFig1.png | thumb | 400 px | Figure 1. TCH treatment of a PFAS-laden stockpile at Eielson AFB, Alaska<ref name="CrownoverEtAl2023"/>]]
[[File:Richardson1w2Fig4.png | thumb | 400px | Figure 4. Application of the Bomber technology for contaminated sites in low ''k'' materials.]]
+
Since there has been no approved or widely accepted method for treating soils impacted by PFAS, a common practice has been to excavate PFAS-impacted soil and place it in lined stockpiles. Eielson AFB in Alaska is an example where approximately 50 stockpiles were constructed to temporarily store 150,000 cubic yards of soil. One of the stockpiles containing 134 cubic yards of PFAS-impacted soil was heated to 350-450&deg;C over 90 days (Figure 1). Volatilized PFAS was extracted from the soil using vacuum extraction and treated via condensation and filtration by granular activated charcoal. Under field conditions, PFAS concentration reductions from 230 µg/kg to below 0.5 µg/kg were demonstrated for soils that reached 400&deg;C or higher for 7 days. These soils achieved the Alaska soil standards of 3 µg/kg for PFOS and 1.7 µg/kg for PFOA. Cooler soils near the top of the stockpile had remaining PFOS in the range of 0.5-20 µg/kg with an overall average of 4.1 µg/kg. Sampling of all soils heated to 400&deg;C or higher demonstrated that the soils achieved undetectable levels of targeted PFAS (typical reporting limit was 0.5 µg/kg).
[[File:Richardson1w2Fig5.png | thumb | 400px | Figure 5. Chlorinated ethene concentrations at well pair (CMT-1 and IS17MW04).]]
 
The geotechnical industry offers a variety of well-established techniques for quickly and efficiently accessing the subsurface for the purposes of ground stabilization, foundation rehabilitation, porewater drainage, and structural support. The speed and efficiency of these techniques can also be a major advantage for emplacement of remedial amendments into the subsurface. One promising approach is the Grout Bomber, a larger adaptation of conventional cement or compaction grouting techniques for subsurface stabilization. The technology uses an excavator equipped with specialized equipment (a “stitcher”) to quickly push a mandrel (3.5 in. diameter hollow cylindrical rod) into the subsurface and subsequently fill the hole and subsurface voids with cement grout (from bottom to top) using an in-line grout delivery system. The typical arrangement of the Grout Bomber technology includes the installation rig (excavator with the “stitcher” mast; see Figure 3a) and an on-site grout mixing and delivery unit consisting of mixing hopper, pumps, hosing, and power supply. Raw materials are loaded into the mixing hopper (see Figure 3b) where it is mixed to the appropriate consistency, then pumped to the Bomber rig at a rate of approximately 0.25 cubic feet per pump stroke. At the exit end of the Bomber mandrel (see Figure 3c), the grout flows in a continuous and uniform manner, allowing the columns to be emplaced with grout while the mandrel (which was pushed into the subsurface) is lifted to the surface.  Hundreds of closely spaced vertical grout columns can be installed per day using this technology.
 
  
For environmental applications, the Grout Bomber approach can be “repurposed” as a means to improve delivery of remediation amendments into contaminated treatment zones in low ''k'' materials. The remedial amendment (e.g., mixture of zero-valent iron (ZVI), sand, neat oil) can replace the grout and be directly placed into the subsurface from bottom to top (not injected into the surrounding formation), creating hundreds of reaction columns. The Bomber technology offers the following benefits:  
+
===''In situ'' Vadose Zone Treatment, Beale AFB, California ([https://serdp-estcp.mil/projects/details/94949542-f9f7-419d-8028-8ba318495641/er20-5250-project-overview ESTCP project ER20-5250]<ref name="Iery2024">Iery, R. 2024. In Situ Thermal Treatment of PFAS in the Vadose Zone. [https://serdp-estcp.mil/ Strategic Environmental Research and Development Program (SERDP) - Environmental Security Technology Certification Program (ESTCP)], [https://serdp-estcp.mil/projects/details/94949542-f9f7-419d-8028-8ba318495641 Project ER20-5250 Website]. [[Media: ER20-5250 Fact Sheet.pdf | Fact Sheet.pdf]]</ref>)===
* '''Reduces uncertainty: '''  
+
[[File: HeronFig2.png | thumb | 600 px | Figure 2. ''In situ'' TCH treatment of a PFAS-rich vadose zone hotspot at Beale AFB, California]]
The Bomber technology circumvents the “delivery problem” associated with conventional injection-based remediation approaches, particularly in low ''k'' zones. The closely spaced nature of the reaction columns (2-3 ft spacing) reduces the diffusion lengths out of low ''k'' zones and also the uncertainty associated with amendment delivery because contaminants are always < 1 - 1.5 ft from an active treatment zone (see Figure 4).  
+
A former fire-training area at Beale AFB had PFAS concentrations as high as 1,970 µg/kg in shallow soils. In situ treatment of a PFAS-rich soil was demonstrated using 16 TCH borings installed in the source area to a depth of 18 ft (Figure 2). Soils which reached the target temperatures were reduced to PFAS concentrations below 1 µg/kg. Perched water which entered in one side of the area delayed heating in that area, and soils which were affected had more modest PFAS concentration reductions. As a lesson learned, future in situ TCH treatments will include provisions for minimizing water entering the treated volume<ref name="Iery2024"/>. It was demonstrated that with proper water management, even highly impacted soils can be treated to near non-detect concentrations (greater than 99% reduction).
  
* '''Rapid installation of reaction columns: '''
+
===Constructed Pile Treatment, JBER, Alaska ([https://serdp-estcp.mil/projects/details/eb7311db-6233-4c7f-b23a-e003ac1926c5/pfas-treatment-in-soil-using-thermal-conduction-heating ESTCP Project ER23-8369]<ref name="CrownoverHeron2024">Crownover, E., Heron, G., 2024. PFAS Treatment in Soil Using Thermal Conduction Heating. Defense Innovation Unit (DIU) and [https://serdp-estcp.mil/ Strategic Environmental Research and Development Program (SERDP) - Environmental Security Technology Certification Program (ESTCP)],  [https://serdp-estcp.mil/projects/details/eb7311db-6233-4c7f-b23a-e003ac1926c5/pfas-treatment-in-soil-using-thermal-conduction-heating Project ER23-8369 Website]</ref>)===
The Grout Bomber can install 100+ reaction columns per day to depths of 40-50 ft below ground surface (bgs) to encourage contaminant degradation in source zones. Since the Grout Bomber is a direct push technique, it is better suited to silts and clays with blow counts < 35. Consolidated materials with higher blow counts will require additional equipment to pre-drill the columns prior to amendment emplacement. In general, this technology represents a much simpler, less intensive, and easier to install version of complete soil mixing.  
+
[[File: HeronFig3.png | thumb | 600 px | Figure 3. Treatment of a 2,000 cubic yard soil pile at JBER, Alaska]]
 +
In 2024, a stockpile of 2,000 cubic yards of PFAS-impacted soil was thermally treated at Joint Base Elmendorf-Richardson (JBER) in Anchorage, Alaska<ref name="CrownoverHeron2024"/>. This ESTCP project was implemented in partnership with DOD’s Defense Innovation Unit (DIU). Three technology demonstrations were conducted at the site where approximately 6,000 cy of PFAS-impacted soil was treated (TCH, smoldering and kiln-style thermal desorption). Figure 3 shows the fully constructed pile used for the TCH demonstration. In August 2024 the soil temperature for the TCH treatment exceeded 400&deg;C in all monitoring locations. At an energy density of 355 kWh/cy, Alaska Department of Environmental Conservation (ADEC) standards and EPA Residential Regional Screening Levels (RSLs) for PFAS in soil were achieved. At JBER, all 30 post-treatment soil samples were near or below detection limits for all targeted PFAS compounds using EPA Method 1633. The composite of all 30 soil samples was below all detection limits for EPA Method 1633. Detection limits ranged from 0.0052 µg/kg to 0.19 µg/kg.
  
* '''Accommodates various amendment types: '''
+
==Advantages and Disadvantages==
In one example<ref name="Richardson2020"/>, vertical reaction columns containing a mixture of ZVI, vegetable oil, sand and minor amounts of water were installed to a depth of 30 ft bgs in a low ''k'' treatment area consisting primarily of silts, sandy clays, and lean clays<ref name="Divine2018"/>.  The ZVI-sand-oil mixture was designed to have a similar consistency (or viscosity) to cement grout, thus requiring no major alterations to the existing Bomber equipment for the project.  Recommended practices to ensure uninterrupted flow of amendments to the Bomber mandrel include:
+
Thermal treatment of PFAS in soils is energy intensive, and the cost of that energy may be prohibitive for some clients. Also, while it often is the least costly option for complete PFAS removal when compared to excavation followed by offsite disposal or destruction, heating soil to treatment temperatures on site or ''in situ'' typically takes longer than excavation. Major advantages include:
** Conduct simple pumping pilot studies with amendments of varying consistencies,
+
*On site or ''in situ'' treatment eliminates the need to transport and dispose of the contaminated soil
** Consult with a well trained pump operator, and  
+
*Site liabilities are removed once and for all
** Minimize the length of hosing between mixing hopper pump and Bomber mandrel.  
+
*Treatment costs are competitive with excavation, transportation and off-site treatment or disposal.
  
* '''Cost effective source zone treatment: '''
+
==Recommendations==
Estimated treatment costs associated with emplacement of amendments with the Grout Bomber are ~$35 per cubic yard of source zone treated (including contractor labor, equipment, and materials). This is generally less than the reported unit cost for ''in situ'' biodegradation ($20-$80/yd<sup>3</sup>) and significantly less than chemical oxidation ($125/yd<sup>3</sup>) and thermal remediation (median $200/yd<sup>3</sup>)<ref name="McDade2005">McDade, J.M., T.M. McGuire, and Newell, C.J., 2005. Analysis of DNAPL Source Depletion Costs at 36 Field Sites, Remediation, 15(2), pp. 9-18.  [https://doi.org/10.1002/rem.20039 DOI: 10.1002/rem.20039]</ref>.
+
Recent research suggests:
 +
*Successful thermal treatment of PFAS may require a higher target temperature than for other organics with similar boiling points
 +
*Prevention of influx of water into treatment zone may be necessary.
 +
Future studies should examine the potential for enhanced degradation during the thermal process by using soil amendments and/or manipulation of the local geochemistry to reduce the required treatment temperatures and therefore also reduce energy demand.
  
===Operational Approach & Results===
+
==References==
A field demonstration was conducted at Site 17, Naval Support Facility Indian Head, Maryland. The treatment area consists primarily of silts, sandy clays, and lean clays with TCE concentrations in soil and groundwater of up to 250 mg/kg and 400 mg/L, respectively. Eight hundred reaction columns (consisting of ZVI/sand or oil/sand), were installed 2-3 ft apart, to a depth of 30 ft bgs at the site. Approximately 100 reaction columns were installed per day, with the most productive day totaling 180 columns. During operation, installation time for each reaction column was on the order of 1-2 minutes. Overall, 77,000 lbs of ZVI and 650 gallons of vegetable oil were emplaced within the source area of ~5,000 ft<sup>2</sup>.
+
<references />
  
===Performance Results===
+
==See Also==
Ongoing post installation monitoring of treatment area groundwater has found moderate reductions in TCE in site monitoring wells and that key degradation products that serve as indicators for both abiotic and biotic mechanisms (i.e., acetylene, ethene/ethane) are present. Samples from Continuous Multilevel Tubing (CMT) wells installed within reaction columns (anulus filled with ZVI amendment) have demonstrated 1-3 orders of magnitude reductions in TCE relative to the surrounding formation water (see Figure 5). These results provide evidence that the reaction columns are creating steep concentration gradients that could drive contaminants out of low permeability zones. Further, gaseous products (e.g., propane, propene, i-butane, n-butane, n-pentane, n-hexane) were detected in the unsaturated zone of several reaction columns further supporting abiotic TCE degradation. Results of this full scale project were very promising and, although several operational improvements were identified (e.g., improved pumpability of ZVI/sand mixture; minor equipment modifications; improved site prep practices), the Bomber technology has the potential to be an important remediation alternative for hard-to-treat chlorinated source zones, particularly ones with large, persistent matrix diffusion sources over large areas.
 

Latest revision as of 19:39, 30 December 2025

Thermal Conduction Heating for Treatment of PFAS-Impacted Soil

Removal of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) compounds from impacted soils is challenging due to the modest volatility and varying properties of most PFAS compounds. Thermal treatment technologies have been developed for treatment of semi-volatile compounds in soils such as dioxins, furans, poly-aromatic hydrocarbons and poly-chlorinated biphenyls at temperatures near 325°C. In controlled bench-scale testing, complete removal of targeted PFAS compounds to concentrations below reporting limits of 0.5 µg/kg was demonstrated at temperatures of 400°C[1]. Three field-scale thermal PFAS treatment projects that have been completed in the US include an in-pile treatment demonstration, an in situ vadose zone treatment demonstration and a larger scale treatment demonstration with excavated PFAS-impacted soil in a constructed pile. Based on the results, thermal treatment temperatures of at least 400°C and a holding time of 7-10 days are recommended for reaching local and federal PFAS soil standards. The energy requirement to treat typical wet soil ranges from 300 to 400 kWh per cubic yard, exclusive of heat losses which are scale dependent. Extracted vapors have been treated using condensation and granular activated charcoal filtration, with thermal and catalytic oxidation as another option which is currently being evaluated for field scale applications. Compared to other options such as soil washing, the ability to treat on site and to treat all soil fractions is an advantage.

Related Article(s):

Contributors: Gorm Heron, Emily Crownover, Patrick Joyce, Ramona Iery

Key Resource:

  • Perfluoroalkyl and polyfluoroalkyl substances thermal desorption evaluation[1]

Introduction

Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) have become prominent emerging contaminants in soil and groundwater. Soil source zones have been identified at locations where the chemicals were produced, handled or used. Few effective options exist for treatments that can meet local and federal soil standards. Over the past 30 plus years, thermal remediation technologies have grown from experimental and innovative prospects to mature and accepted solutions deployed effectively at many sites. More than 600 thermal case studies have been summarized by Horst and colleagues[2]. Thermal Conduction Heating (TCH) has been used for higher temperature applications such as removal of 1,4-Dioxane. This article reports recent experience with TCH treatment of PFAS-impacted soil.

Target Temperature and Duration

PFAS behave differently from most other organics subjected to TCH treatment. While the boiling points of individual PFAS fall in the range of 150-400°C, their chemical and physical behavior creates additional challenges. Some PFAS form ionic species in certain pH ranges and salts under other chemical conditions. This intricate behavior and our limited understanding of what this means for our ability to remove the PFAS from soils means that direct testing of thermal treatment options is warranted. Crownover and colleagues[1] subjected PFAS-laden soil to bench-scale heating to temperatures between 200 and 400°C which showed strong reductions of PFAS concentrations at 350°C and complete removal of many PFAS compounds at 400°C. The soil concentrations of targeted PFAS were reduced to nearly undetectable levels in this study.

Heating Method

For semi-volatile compounds such as dioxins, furans, poly-chlorinated biphenyls (PCBs) and Poly-Aromatic Hydrocarbons (PAH), thermal conduction heating has evolved as the dominant thermal technology because it is capable of achieving soil temperatures higher than the boiling point of water, which are necessary for complete removal of these organic compounds. Temperatures between 200 and 500°C have been required to achieve the desired reduction in contaminant concentrations[3]. TCH has become a popular technology for PFAS treatment because temperatures in the 400°C range are needed.

The energy source for TCH can be electricity (most commonly used), or fossil fuels (typically gas, diesel or fuel oil). Electrically powered TCH offers the largest flexibility for power input which also can be supplied by renewable and sustainable energy sources.

Energy Usage

Treating PFAS-impacted soil with heat requires energy to first bring the soil and porewater to the boiling point of water, then to evaporate the porewater until the soil is dry, and finally to heat the dry soil up to the target treatment temperature. The energy demand for wet soils falls in the 300-400 kWh/cy range, dependent on porosity and water saturation. Additional energy is consumed as heat is lost to the surroundings and by vapor treatment equipment, yielding a typical usage of 400-600 kWh/cy total for larger soil treatment volumes. Wetter soils and small treatment volumes drive the energy usage towards the higher number, whereas larger soil volumes and dry soil can be treated with less energy.

Vapor Treatment

During the TCH process a significant fraction of the PFAS compounds are volatilized by the heat and then removed from the soil by vacuum extraction. The vapors must be treated and eventually discharged while meeting local and/or federal standards. Two types of vapor treatment have been used in past TCH applications for organics: (1) thermal and catalytic oxidation and (2) condensation followed by granular activated charcoal (GAC) filtration. Due to uncertainties related to thermal destruction of fluorinated compounds and future requirements for treatment temperature and residence time, condensation and GAC filtration have been used in the first three PFAS treatment field demonstrations. It should be noted that PFAS compounds will stick to surfaces and that decontamination of the equipment is important. This could generate additional waste as GAC vessels, pipes and other wetted equipment need careful cleaning with solvents or rinsing agents such as PerfluorAdTM.

PFAS Reactivity and Fate

While evaluating initial soil treatment results, Crownover et al[1] noted the lack of complete data sets when the soils were analyzed for non-targeted compounds or extractable precursors. Attempts to establish the fluorine balance suggest that the final fate of the fluorine in the PFAS is not yet fully understood. Transformations are likely occurring in the heated soil as demonstrated in laboratory experiments with and without calcium hydroxide (Ca(OH)2) amendment[4]. Amendments such as Ca(OH)2 may be useful in reducing the required treatment temperature by catalyzing PFAS degradation. With thousands of PFAS potentially present, the interactions are complex and may never be fully understood. Therefore, successful thermal treatment may require a higher target temperature than for other organics with similar boiling points – simply to provide a buffer against the uncertainty.

Case Studies

Stockpile Treatment, Eielson AFB, Alaska (ESTCP project ER20-5198[5])

Figure 1. TCH treatment of a PFAS-laden stockpile at Eielson AFB, Alaska[5]

Since there has been no approved or widely accepted method for treating soils impacted by PFAS, a common practice has been to excavate PFAS-impacted soil and place it in lined stockpiles. Eielson AFB in Alaska is an example where approximately 50 stockpiles were constructed to temporarily store 150,000 cubic yards of soil. One of the stockpiles containing 134 cubic yards of PFAS-impacted soil was heated to 350-450°C over 90 days (Figure 1). Volatilized PFAS was extracted from the soil using vacuum extraction and treated via condensation and filtration by granular activated charcoal. Under field conditions, PFAS concentration reductions from 230 µg/kg to below 0.5 µg/kg were demonstrated for soils that reached 400°C or higher for 7 days. These soils achieved the Alaska soil standards of 3 µg/kg for PFOS and 1.7 µg/kg for PFOA. Cooler soils near the top of the stockpile had remaining PFOS in the range of 0.5-20 µg/kg with an overall average of 4.1 µg/kg. Sampling of all soils heated to 400°C or higher demonstrated that the soils achieved undetectable levels of targeted PFAS (typical reporting limit was 0.5 µg/kg).

In situ Vadose Zone Treatment, Beale AFB, California (ESTCP project ER20-5250[6])

Figure 2. In situ TCH treatment of a PFAS-rich vadose zone hotspot at Beale AFB, California

A former fire-training area at Beale AFB had PFAS concentrations as high as 1,970 µg/kg in shallow soils. In situ treatment of a PFAS-rich soil was demonstrated using 16 TCH borings installed in the source area to a depth of 18 ft (Figure 2). Soils which reached the target temperatures were reduced to PFAS concentrations below 1 µg/kg. Perched water which entered in one side of the area delayed heating in that area, and soils which were affected had more modest PFAS concentration reductions. As a lesson learned, future in situ TCH treatments will include provisions for minimizing water entering the treated volume[6]. It was demonstrated that with proper water management, even highly impacted soils can be treated to near non-detect concentrations (greater than 99% reduction).

Constructed Pile Treatment, JBER, Alaska (ESTCP Project ER23-8369[7])

Figure 3. Treatment of a 2,000 cubic yard soil pile at JBER, Alaska

In 2024, a stockpile of 2,000 cubic yards of PFAS-impacted soil was thermally treated at Joint Base Elmendorf-Richardson (JBER) in Anchorage, Alaska[7]. This ESTCP project was implemented in partnership with DOD’s Defense Innovation Unit (DIU). Three technology demonstrations were conducted at the site where approximately 6,000 cy of PFAS-impacted soil was treated (TCH, smoldering and kiln-style thermal desorption). Figure 3 shows the fully constructed pile used for the TCH demonstration. In August 2024 the soil temperature for the TCH treatment exceeded 400°C in all monitoring locations. At an energy density of 355 kWh/cy, Alaska Department of Environmental Conservation (ADEC) standards and EPA Residential Regional Screening Levels (RSLs) for PFAS in soil were achieved. At JBER, all 30 post-treatment soil samples were near or below detection limits for all targeted PFAS compounds using EPA Method 1633. The composite of all 30 soil samples was below all detection limits for EPA Method 1633. Detection limits ranged from 0.0052 µg/kg to 0.19 µg/kg.

Advantages and Disadvantages

Thermal treatment of PFAS in soils is energy intensive, and the cost of that energy may be prohibitive for some clients. Also, while it often is the least costly option for complete PFAS removal when compared to excavation followed by offsite disposal or destruction, heating soil to treatment temperatures on site or in situ typically takes longer than excavation. Major advantages include:

  • On site or in situ treatment eliminates the need to transport and dispose of the contaminated soil
  • Site liabilities are removed once and for all
  • Treatment costs are competitive with excavation, transportation and off-site treatment or disposal.

Recommendations

Recent research suggests:

  • Successful thermal treatment of PFAS may require a higher target temperature than for other organics with similar boiling points
  • Prevention of influx of water into treatment zone may be necessary.

Future studies should examine the potential for enhanced degradation during the thermal process by using soil amendments and/or manipulation of the local geochemistry to reduce the required treatment temperatures and therefore also reduce energy demand.

References

  1. ^ 1.0 1.1 1.2 1.3 Crownover, E., Oberle, D., Heron, G., Kluger, M., 2019. Perfluoroalkyl and polyfluoroalkyl substances thermal desorption evaluation. Remediation Journal, 29(4), pp. 77-81. doi: 10.1002/rem.21623
  2. ^ Horst, J., Munholland, J., Hegele, P., Klemmer, M., Gattenby, J., 2021. In Situ Thermal Remediation for Source Areas: Technology Advances and a Review of the Market From 1988–2020. Groundwater Monitoring & Remediation, 41(1), p. 17. doi: 10.1111/gwmr.12424  Open Access Manuscript
  3. ^ Stegemeier, G.L., Vinegar, H.J., 2001. Thermal Conduction Heating for In-Situ Thermal Desorption of Soils. Ch. 4.6, pp. 1-37. In: Chang H. Oh (ed.), Hazardous and Radioactive Waste Treatment Technologies Handbook, CRC Press, Boca Raton, FL. ISBN 9780849395864 Open Access Article
  4. ^ Koster van Groos, P.G., 2021. Small-Scale Thermal Treatment of Investigation-Derived Wastes Containing PFAS. Strategic Environmental Research and Development Program (SERDP) - Environmental Security Technology Certification Program (ESTCP), Project ER18-1556 Website, Final Report.pdf
  5. ^ 5.0 5.1 Crownover, E., Heron, G., Pennell, K., Ramsey, B., Rickabaugh, T., Stallings, P., Stauch, L., Woodcock, M., 2023. Ex Situ Thermal Treatment of PFAS-Impacted Soils, Final Report. Eielson Air Force Base, Alaska. Strategic Environmental Research and Development Program (SERDP) - Environmental Security Technology Certification Program (ESTCP), Project ER20-5198 Website
  6. ^ 6.0 6.1 Iery, R. 2024. In Situ Thermal Treatment of PFAS in the Vadose Zone. Strategic Environmental Research and Development Program (SERDP) - Environmental Security Technology Certification Program (ESTCP), Project ER20-5250 Website. Fact Sheet.pdf
  7. ^ 7.0 7.1 Crownover, E., Heron, G., 2024. PFAS Treatment in Soil Using Thermal Conduction Heating. Defense Innovation Unit (DIU) and Strategic Environmental Research and Development Program (SERDP) - Environmental Security Technology Certification Program (ESTCP), Project ER23-8369 Website

See Also