Difference between revisions of "User:Jhurley/sandbox"
Line 1: | Line 1: | ||
− | + | The persistent release of residual contaminants from low hydraulic conductivity (low ''k'') zones prevents many chlorinated solvent sites from reaching groundwater cleanup goals. Low ''k'' aquifer settings limit the effectiveness of many conventional remediation technologies that rely on extraction, recirculation, or amendment delivery and distribution to achieve contact between the residual contaminants and the reagents, contact which is necessary for subsequent contaminant transformation or destruction. Alternative methods are needed to effectively distribute remedial amendments, to control contaminants leaving low ''k'' source zones, and to enhance natural attenuation processes. Two innovative remediation technologies for the treatment of chlorinated solvents and other contaminants in low ''k'' media are introduced, along with operational and performance results from recent field demonstrations. | |
+ | '''Related Article(s):''' | ||
+ | * [[Bioremediation - Anaerobic | Anaerobic Bioremediation]] | ||
+ | * [[Chemical Oxidation (In Situ - ISCO) | In Situ Chemical Oxidation]] | ||
+ | * [[Chemical Reduction (In Situ - ISCR) | In Situ Chemical Reduction]] | ||
− | + | '''CONTRIBUTOR(S): ''' | |
+ | * [[Stephen D. Richardson, Ph.D., PE]] | ||
+ | * [[Craig E. Divine, Ph.D., PG]] | ||
+ | '''Key Resource(s):''' | ||
+ | * The Horizontal Reactive Media Treatment Well (HRX Well<sup>®</sup>) for Passive In-Situ Remediation<ref name="Divine2018a">Divine, C. E., Roth, T, Crimi, M., DiMarco, A.C., Spurlin, M., Gillow, J., and Leone, G., 2018. The Horizontal Reactive Media Treatment Well (HRX Well<sup>®</sup>) for Passive In-Situ Remediation. Groundwater Monitoring & Remediation, 38(1), pp. 56–65. [https://doi.org/10.1111/gwmr.12252 DOI: 10.1111/gwmr.12252]</ref> | ||
− | + | * The Horizontal Reactive Media Treatment Well (HRX Well<sup>®</sup>) for Passive In Situ Remediation: Design, Implementation, and Sustainability Considerations<ref name="Divine2018">Divine, C.E., Wright, J., Wang, J., McDonough, J., Kladias, M., Crimi, M., Nzeribe, B.N., Devlin, J.F., Lubrecht, M., Ombalski, D., Hodge, B., Voscott, H., and Gerber, K., 2018. The Horizontal Reactive Media Treatment Well (HRX Well<sup>®</sup>) for Passive In Situ Remediation: Design, Implementation, and Sustainability Considerations. Remediation, 28(4), pp. 5-16. [https://doi.org/10.1002/rem.21571 DOI: 10.1002/rem.21571] Also available from: [https://www.researchgate.net/publication/327487096_The_horizontal_reactive_media_treatment_well_HRX_WellR_for_passive_in_situ_remediation_Design_implementation_and_sustainability_considerations ResearchGate]</ref> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | * New Application of A Geotechnical Technology to Remediate Low-Permeability Contaminated Media – Final Technical Report<ref name="Richardson2020">Richardson, S.D., Hart, D.M., Long, J.A., and Newell, C.J., 2020. New Application of A Geotechnical Technology to Remediate Low-Permeability Contaminated Media – Final Technical Report. ER-201627, Environmental Security Technology Certification Program (ESTCP). [https://www.serdp-estcp.org/Program-Areas/Environmental-Restoration/Contaminated-Groundwater/Persistent-Contamination/ER-201627/ Project Overview]</ref> | |
− | + | ==Introduction== | |
+ | A critical challenge preventing many chlorinated solvent sites from achieving groundwater cleanup goals is the long term release of residual contaminants from low hydraulic conductivity (low ''k'') zones such as silts, clays, glacial till, over-bank deposits, marine deposits, tailings “slimes”, saprolite and bedrock (see Figure 1)<ref name ="Horst2019">Horst, J., Divine, C., Schnobrich, M., Oesterreich, R., and Munholland, J., 2019. Groundwater Remediation in Low-Permeability Settings: The Evolving Spectrum of Proven and Potential. Groundwater Monitoring & Remediation, 39(1), pp. 11-19. [https://doi.org/10.1111/gwmr.12316 DOI: 10.1111/gwmr.12316]</ref><ref name ="Sale2008">Sale, T., C. Newell, H. Stroo, R. Hinchee, and Johnson, P., 2008. Frequently Asked Questions Regarding Management of Chlorinated Solvents in Soils and Groundwater. Environmental Security Technology Certification Program (ESTCP) Project ER-0530, 38 pp. [[Media:2008-Sale-Frequently_Asked_Questions_Regarding_Management_of_Chlorinated_Solvent_in_Soils_and_Groundwater.pdf | Report.pdf]] [https://serdp-estcp.org/Program-Areas/Environmental-Restoration/Contaminated-Groundwater/Persistent-Contamination/ER-200530/(language)/eng-US Project overview]</ref>. Such sites may be dominated by matrix diffusion processes (see Figure 2) which can significantly prolong restoration and site management timeframes. Residual contaminants residing in low permeability zones slowly diffuse from the low ''k'' matrix back into higher permeability zones, becoming a persistent source that is very difficult to remediate. One of the side effects of matrix diffusion is concentration rebound after an ''in situ'' treatment is applied. This is commonly observed at sites treated with chemical oxidation<ref name="McGuire2006">McGuire, T.M., McDade, J.M., and Newell, C.J., 2006. Performance of DNAPL Source Depletion Technologies at 59 Chlorinated Solvent-Impacted Sites. Groundwater Monitoring & Remediation. Volume 26, Issue 1, pp. 73-84. [https://doi.org/10.1111/j.1745-6592.2006.00054.x DOI: 10.1111/j.1745-6592.2006.00054.x] [https://www.provectusenvironmental.com/marketing/p-ox1/McGuire%20et%20al%202006.pdf Free download.pdf]</ref><ref name="Krembs2010">Krembs, F., Siegrist, R., Crimi, M., Furrer, R., and Petri, B., 2010. ISCO for Groundwater Remediation: Analysis of Field Applications and Performance. Groundwater Monitoring & Remediation, 30(4), pp. 42-53. [https://doi.org/10.1111/j.1745-6592.2010.01312.x DOI: 10.1111/j.1745-6592.2010.01312.x]</ref> and has the potential to occur at ''in situ'' bioremediation sites after the depletion of electron donors<ref name="Adamson2011">Adamson, D., McGuire, T., Newell, C., and Stroo, H., 2011. Sustained Treatment: Implications for Treatment Timescales Associated with Source-Depletion Technologies. Remediation, 21(2), pp. 27-50. [https://doi.org/10.1002/rem.20280 DOI: 10.1002/rem.20280]</ref>. |
Revision as of 16:57, 25 June 2020
The persistent release of residual contaminants from low hydraulic conductivity (low k) zones prevents many chlorinated solvent sites from reaching groundwater cleanup goals. Low k aquifer settings limit the effectiveness of many conventional remediation technologies that rely on extraction, recirculation, or amendment delivery and distribution to achieve contact between the residual contaminants and the reagents, contact which is necessary for subsequent contaminant transformation or destruction. Alternative methods are needed to effectively distribute remedial amendments, to control contaminants leaving low k source zones, and to enhance natural attenuation processes. Two innovative remediation technologies for the treatment of chlorinated solvents and other contaminants in low k media are introduced, along with operational and performance results from recent field demonstrations.
Related Article(s):
CONTRIBUTOR(S):
Key Resource(s):
- The Horizontal Reactive Media Treatment Well (HRX Well®) for Passive In-Situ Remediation[1]
- The Horizontal Reactive Media Treatment Well (HRX Well®) for Passive In Situ Remediation: Design, Implementation, and Sustainability Considerations[2]
- New Application of A Geotechnical Technology to Remediate Low-Permeability Contaminated Media – Final Technical Report[3]
Introduction
A critical challenge preventing many chlorinated solvent sites from achieving groundwater cleanup goals is the long term release of residual contaminants from low hydraulic conductivity (low k) zones such as silts, clays, glacial till, over-bank deposits, marine deposits, tailings “slimes”, saprolite and bedrock (see Figure 1)[4][5]. Such sites may be dominated by matrix diffusion processes (see Figure 2) which can significantly prolong restoration and site management timeframes. Residual contaminants residing in low permeability zones slowly diffuse from the low k matrix back into higher permeability zones, becoming a persistent source that is very difficult to remediate. One of the side effects of matrix diffusion is concentration rebound after an in situ treatment is applied. This is commonly observed at sites treated with chemical oxidation[6][7] and has the potential to occur at in situ bioremediation sites after the depletion of electron donors[8].
- ^ Divine, C. E., Roth, T, Crimi, M., DiMarco, A.C., Spurlin, M., Gillow, J., and Leone, G., 2018. The Horizontal Reactive Media Treatment Well (HRX Well®) for Passive In-Situ Remediation. Groundwater Monitoring & Remediation, 38(1), pp. 56–65. DOI: 10.1111/gwmr.12252
- ^ Divine, C.E., Wright, J., Wang, J., McDonough, J., Kladias, M., Crimi, M., Nzeribe, B.N., Devlin, J.F., Lubrecht, M., Ombalski, D., Hodge, B., Voscott, H., and Gerber, K., 2018. The Horizontal Reactive Media Treatment Well (HRX Well®) for Passive In Situ Remediation: Design, Implementation, and Sustainability Considerations. Remediation, 28(4), pp. 5-16. DOI: 10.1002/rem.21571 Also available from: ResearchGate
- ^ Richardson, S.D., Hart, D.M., Long, J.A., and Newell, C.J., 2020. New Application of A Geotechnical Technology to Remediate Low-Permeability Contaminated Media – Final Technical Report. ER-201627, Environmental Security Technology Certification Program (ESTCP). Project Overview
- ^ Horst, J., Divine, C., Schnobrich, M., Oesterreich, R., and Munholland, J., 2019. Groundwater Remediation in Low-Permeability Settings: The Evolving Spectrum of Proven and Potential. Groundwater Monitoring & Remediation, 39(1), pp. 11-19. DOI: 10.1111/gwmr.12316
- ^ Sale, T., C. Newell, H. Stroo, R. Hinchee, and Johnson, P., 2008. Frequently Asked Questions Regarding Management of Chlorinated Solvents in Soils and Groundwater. Environmental Security Technology Certification Program (ESTCP) Project ER-0530, 38 pp. Report.pdf Project overview
- ^ McGuire, T.M., McDade, J.M., and Newell, C.J., 2006. Performance of DNAPL Source Depletion Technologies at 59 Chlorinated Solvent-Impacted Sites. Groundwater Monitoring & Remediation. Volume 26, Issue 1, pp. 73-84. DOI: 10.1111/j.1745-6592.2006.00054.x Free download.pdf
- ^ Krembs, F., Siegrist, R., Crimi, M., Furrer, R., and Petri, B., 2010. ISCO for Groundwater Remediation: Analysis of Field Applications and Performance. Groundwater Monitoring & Remediation, 30(4), pp. 42-53. DOI: 10.1111/j.1745-6592.2010.01312.x
- ^ Adamson, D., McGuire, T., Newell, C., and Stroo, H., 2011. Sustained Treatment: Implications for Treatment Timescales Associated with Source-Depletion Technologies. Remediation, 21(2), pp. 27-50. DOI: 10.1002/rem.20280